Navigation Links
Researchers develop optimal algorithm for determining focus error in eyes and cameras
Date:9/26/2011

University of Texas at Austin researchers have discovered how to extract and use information in an individual image to determine how far objects are from the focus distance, a feat only accomplished by human and animal visual systems until now.

Like a camera, the human eye has an auto-focusing system, but human auto-focusing rarely makes mistakes. And unlike a camera, humans do not require trial and error to focus an object.

Johannes Burge, a postdoctoral fellow in the College of Liberal Arts' Center for Perceptual Systems and co-author of the study, says it is significant that a statistical algorithm can now determine focus error, which indicates how much a lens needs to be refocused to make the image sharp, from a single image without trial and error.

"Our research on defocus estimation could deepen our understanding of human depth perception," Burge says. "Our results could also improve auto-focusing in digital cameras. We used basic optical modeling and well-understood statistics to show that there is information lurking in images that cameras have yet to tap."

The researchers' algorithm can be applied to any blurry image to determine focus error. An estimate of focus error also makes it possible to determine how far objects are from the focus distance.

In the human eye, inevitable defects in the lens, such as astigmatism, can help the visual system (via the retina and brain) compute focus error; the defects enrich the pattern of "defocus blur," the blur that is caused when a lens is focused at the wrong distance. Humans use defocus blur to both estimate depth and refocus their eyes. Many small animals use defocus as their primary depth cue.

"We are now one step closer to understanding how these feats are accomplished," says Wilson Geisler, director of the Center for Perceptual Systems and coauthor of the study. "The pattern of blur introduced by focus errors, along with the statistical regularities of natural images, makes this possible."

Burge and Geisler considered what happens to images as focus error increases: an increasing amount of detail is lost with larger errors. Then, they noted that even though the content of images varies considerably (e.g. faces, mountains, flowers), the pattern and amount of detail in images is remarkably constant. This constancy makes it possible to determine the amount of defocus and, in turn, to re-focus appropriately.


'/>"/>

Contact: Johannes Burge
jburge@mail.cps.utexas.edu
510-604-9515
University of Texas at Austin
Source:Eurekalert

Related biology news :

1. Researchers at Cruces Hospital describe new syndrome of slight family intellectual disability
2. UCLA researchers develop system that finds prostate cancer spread earlier than conventional imaging
3. Joslin researchers identify pathways leading to activation of good fat
4. Kansas researchers find enriched infant formulas benefit brain and heart
5. Researchers sequence dark matter of life
6. Researchers discover a switch that controls stem cell pluripotency
7. MU researchers unveil new method for detecting lung cancer in Nature article
8. Notre Dame researchers demonstrate antibiotic sensing event central to MSRA antibiotic resistance
9. Researchers uncover a potential new benefit of pure maple syrup on liver health
10. EPA grants help Wayne State researchers stave off Great Lakes environmental invaders
11. UTHealth, BCM researchers find common gene variant associated with aortic dissection
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... , April 5, 2017 Today HYPR ... that the server component of the HYPR platform is ... providing the end-to-end security architecture that empowers biometric authentication ... HYPR has already secured over 15 million users across ... manufacturers of connected home product suites and physical access ...
(Date:4/3/2017)... 2017  Data captured by IsoCode, IsoPlexis ... a statistically significant association between the potency ... and objective response of cancer patients post-treatment. ... whether cancer patients will respond to CAR-T ... as to improve both pre-infusion potency testing and ...
(Date:3/30/2017)... 2017 Trends, opportunities and forecast in this ... technology (fingerprint, AFIS, iris recognition, facial recognition, hand geometry, ... end use industry (government and law enforcement, commercial and ... and others), and by region ( North America ... Asia Pacific , and the Rest of the ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... genomics analysis platform specifically designed for life science researchers to analyze and ... researcher Rosalind Franklin, who made a major contribution to the discovery of ...
(Date:10/11/2017)... ... October 11, 2017 , ... The ... context, enabling overexpression experiments and avoiding the use of exogenous expression plasmids. The ... transformative for performing systematic gain-of-function studies. , This complement to loss-of-function studies, ...
(Date:10/11/2017)... ... October 11, 2017 , ... ComplianceOnline’s Medical Device Summit is back ... 8th June 2018 in San Francisco, CA. The Summit brings together current and former ... CEOs, board directors and government officials from around the world to address key issues ...
(Date:10/11/2017)... BioMarketing, a leading provider of patient support solutions, has announced ... network, which will launch this week. The VMS CNEs will ... to enhance the patient care experience by delivering peer-to-peer education ... professionals to help women who have been diagnosed and are ... ...
Breaking Biology Technology: