Navigation Links
Researchers develop drug delivery system using nanoparticles triggered by electromagnetic field

KINGSTON, R.I. July 8, 2010 A new system for the controlled delivery of pharmaceutical drugs has been developed by a team of University of Rhode Island chemical engineers using nanoparticles embedded in a liposome that can be triggered by non-invasive electromagnetic fields.

The discovery by URI professors Geoffrey Bothun and Arijit Bose and graduate student Yanjing Chen was published in the June issue of ACS Nano.

According to Bothun, liposomes are tiny nanoscale spherical structures made of lipids that can trap different drug molecules inside them for use in delivering those drugs to targeted locations in the body. The superparamagnetic iron oxide nanoparticles the researchers embed in the shell of the liposome release the drug by making the shell leaky when heat-activated in an alternating current electromagnetic field operating at radio frequencies.

"We've shown that we can control the rate and extent of the release of a model drug molecule by varying the nanoparticle loading and the magnetic field strength," explained Bothun. "We get a quick release of the drug with magnetic field heating in a matter of 30 to 40 minutes, and without heating there is minimal spontaneous leakage of the drug from the liposome."

Bothun said that the liposomes self-assemble because portions of the lipids are hydrophilic they have a strong affinity for water and others are hydrophobic they avoid water. When he mixes lipids and nanoparticles in a solvent, adds water and evaporates off the solvent, the materials automatically assemble themselves into liposomes. The hydrophobic nanoparticles and lipids join together to form the shell of the liposome, while the water-loving drug molecules are captured inside the spherical shell.

"The concept of loading nanoparticles within the hydrophobic shell to focus the activation is brand new," Bothun said. "It works because the leakiness of the shell is ultimately what controls the release of the drugs."

The next step in the research is to design and optimize liposome/nanoparticle assemblies that can target cancer cells or other disease-causing cells. In vitro cancer cell studies are already underway in collaboration with URI pharmacy professor Matthew Stoner.

"We are functionalizing the liposomes by putting in different lipids to help stabilize and target them so they can seek out particular cancer cell types," he said. "We are building liposomes that will attach to particular cells or tumor regions."

Bothun said that research on nanomedicine shows great promise, but there are still many challenges to overcome, and the targeting of appropriate cells may be the greatest challenge.

"Any ability to target the drug is better than a drug that goes everywhere in your system and generates off-target effects," he said, noting that the hair loss and nausea from anti-cancer drugs are the result of the high drug concentrations needed for treatment and the drug's affect on non-target cells. "If you can get an assembly to a targeted site without losing its contents in the process, that's the holy grail."


Contact: Shane Donaldson
University of Rhode Island

Related biology news :

1. NC State researchers get to root of parasite genome
2. Researchers find animal with ability to survive climate change
3. Researchers find an essential gene for forming ears of corn
4. Researchers note differences between people and animals on calorie restriction
5. Researchers study acoustic communication in deep-sea fish
6. Researchers discover that growing up too fast may mean dying young in honey bees
7. Researchers study how pistachios may improve heart health
8. UI researchers find potentially toxic substance present in Chicago air
9. Researchers develop new self-training gene prediction program for fungi
10. Case Western Reserve University researchers track Chernobyl fallout
11. Childrens National researchers develop novel anti-tumor vaccine
Post Your Comments:
(Date:11/9/2015)...  Synaptics Inc. (NASDAQ: SYNA ), the leading ... into the automotive market with a comprehensive and dedicated ... consumer electronics human interface innovation. Synaptics, industry-leading touch controllers, ... automotive industry and will be implemented in numerous locations ... , Japan , and ...
(Date:10/29/2015)... Oct. 29, 2015  The J. Craig Venter Institute ... "DNA Synthesis and Biosecurity: Lessons Learned and Options for ... Health and Human Services guidance for synthetic biology providers ... --> --> Synthetic ... the potential to pose unique biosecurity threats. It now ...
(Date:10/29/2015)... NXTD ) ("NXT-ID" or ... the growing mobile commerce market and creator of ... leading marketplace to discover and buy innovative technology ... on StackSocial for this holiday season.   ... a biometric authentication company focused on the growing ...
Breaking Biology News(10 mins):
(Date:11/26/2015)... MUMBAI , November 26, 2015 ... --> Accutest Research ... accredited Contract Research Organization (CRO), has ... Chase Cancer Center - Temple Health ... ,     (Photo: ) ...
(Date:11/25/2015)... --> ... 2020 report analyzes that automating biobanking workflow will ... long-term samples, minimizing manual errors, improving the workflow ... errors such as mislabeling or inaccurate sample barcoding ... a vital role in blood fractionation, DNA extraction, ...
(Date:11/25/2015)... 25, 2015 2 nouvelles études permettent ... les différences entre les souches bactériennes retrouvées dans la ... des êtres humains . Ces recherches  ouvrent une nouvelle ... prise en charge efficace de l,un des problèmes ... chats .    --> 2 nouvelles études ...
(Date:11/25/2015)... HOLLISTON, Mass. , Nov. 25, 2015 /PRNewswire/ ... ), a biotechnology company developing bioengineered organ implants for ... will present at the LD Micro "Main Event" ... p.m. PT. The presentation will be webcast live and ... will also be available at the conference for one-on-one ...
Breaking Biology Technology: