Navigation Links
Researchers develop better control for DNA-based computations
Date:2/17/2012

A North Carolina State University chemist has found a way to give DNA-based computing better control over logic operations. His work could lead to interfacing DNA-based computing with traditional silicon-based computing.

The idea of using DNA molecules the material genes are made of to perform computations is not new; scientists have been working on it for over a decade. DNA has the ability to store much more data than conventional silicon-based computers, as well as the potential to perform calculations in a biological environment inside a live cell, for example. But while the technology holds much promise, it is still limited in terms of the ability to control when and where particular computations occur.

Dr. Alex Deiters, associate professor of chemistry at NC State, developed a method for controlling a logic gate within a DNA-based computing system. Logic gates are the means by which computers "compute," as sets of them are combined in different ways to enable the computer to ultimately perform tasks like addition or subtraction. In DNA computing, these same types of gates are created by the combinations of different strands of DNA, rather than by a series of transistors. The drawback is that DNA computation events normally take place in a test tube, where the sequence of computation events cannot be easily controlled with spatial and temporal resolution. So while DNA logic gates can and do work, no one can tell them when or where to work, making it difficult to create sequences of computational events.

In a paper published in the Journal of the American Chemical Society, Deiters addressed the control problem by making portions of the input strands of DNA logic gates photoactivatable, or controllable by ultraviolet (UV) light. The process is known as photocaging. Deiters successfully photocaged several different nucleotides on a DNA logic gate known as an AND gate. When UV light was applied to the gate, it was activated and completed its computational event, showing that photoactivatable logic gates offer an effective solution to the "when and where" issues of DNA-based logic gate control.

Deiters hopes that using light to control DNA logic gates will give researchers the ability not only to create more complicated, sequential DNA computations, but also to create interfaces between silicon and DNA-based computers.

"Since the DNA gates are activated by light, it should be possible to trigger a DNA computation event by converting electrical impulses from a silicon-based computer into light, allowing the interaction of electrical circuits and biological systems," Deiters says.

"Being able to control these DNA events both temporally and spatially gives us a variety of new ways to program DNA computers."


'/>"/>
Contact: Tracey Peake
tracey_peake@ncsu.edu
919-515-6142
North Carolina State University
Source:Eurekalert

Related biology news :

1. NC State researchers get to root of parasite genome
2. Researchers find animal with ability to survive climate change
3. Researchers find an essential gene for forming ears of corn
4. Researchers note differences between people and animals on calorie restriction
5. Researchers study acoustic communication in deep-sea fish
6. Researchers discover that growing up too fast may mean dying young in honey bees
7. Researchers study how pistachios may improve heart health
8. UI researchers find potentially toxic substance present in Chicago air
9. Researchers develop new self-training gene prediction program for fungi
10. Case Western Reserve University researchers track Chernobyl fallout
11. Childrens National researchers develop novel anti-tumor vaccine
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/1/2016)... 2016 Rising sales of consumer ... touchfree intuitive gesture control market size ... of consumer electronics coupled with new technological advancements to ... size through 2020   --> ... technological advancements to drive global touchfree intuitive gesture control ...
(Date:1/25/2016)... Unisys Corporation (NYSE: UIS ) today announced the implementation ... New York City , to help U.S. ... the United States using passports that are ... of the system at Dulles last year. The system will ... 2016. --> pilot testing of the system at ...
(Date:1/20/2016)... 2016 A market that just keeps on ... the explosion in genomics knowledge. Learn all about it ... range of dynamic trends are pushing market growth and ... - pharmacogenomics - pathogen evolution - next generation sequencing ... greater understanding of the role of genetic material in ...
Breaking Biology News(10 mins):
(Date:2/10/2016)... , Feb. 10, 2016  The Maryland House ... , has announced that University of Maryland School of ... MBA and University of Maryland Medical System President and ... the "Speaker,s Medallion," the highest honor given to the ... Delegates. Dean Reece and Mr. Chrencik ...
(Date:2/10/2016)... , Feb. 10, 2016  Allergan plc (NYSE: ... that Brent Saunders , Allergan,s CEO and President, ... fireside chat session at the RBC Capital Markets Healthcare ... ET at The New York Palace Hotel in ... be webcast live and can be accessed on Allergan,s ...
(Date:2/10/2016)... ... 10, 2016 , ... SonaCare Medical, LLC reports the introduction ... remote monitoring. The inaugural launch of this new technology occurred over the course ... Peretsman to a HIFU technical expert at SonaCare Medical headquarters. , Sonalink ...
(Date:2/10/2016)... ... 2016 , ... Creation Technologies, leading global provider of electronics ... Rating Award from Circuits Assembly , today announced its milestone achievement of ISO ... and China. , The EMS provider, known in the EMS industry for its ...
Breaking Biology Technology: