Navigation Links
Researchers design artificial cells that could power medical implants
Date:10/9/2008

Researchers at Yale University have created a blueprint for artificial cells that are more powerful and efficient than the natural cells they mimic and could one day be used to power tiny medical implants.

The scientists began with the question of whether an artificial version of the electrocyte the energy-generating cells in electric eels could be designed as a potential power source. "The electric eel is very efficient at generating electricity," said Jian Xu, a postdoctoral associate in Yale's Department of Chemical Engineering. "It can generate more electricity than a lot of electrical devices."

Xu came up with the first blueprint that shows how the electrocyte's different ion channels work together to produce the fish's electricity while he was a graduate student under former Yale assistant professor of mechanical engineering David LaVan, now at the National Institute of Standards and Technology.

But the scientists didn't stop there. "We're still trying to understand how the mechanisms in these cells work," said LaVan. "But we asked ourselves: 'Do we know enough to sit down and start thinking about how to build these things?' Nobody had really done that before."

Using the new blueprint as a guide, LaVan and Xu set about designing an artificial cell that could replicate the electrocyte's energy production. "We wanted to see if nature had already optimized the power output and energy conversion efficiency of this cell," said Xu. "And we found that an artificial cell could actually outperform a natural cell, which was a very surprising result."

The artificial cell LaVan and Xu modeled is capable of producing 28 percent more electricity than the eel's own electrocyte, with 31 percent more efficiency in converting the cell's chemical energy derived from the eel's food into electricity.

While eels use thousands of electrocytes to produce charges of up to 600 volts, LaVan and Xu show it would be possible to create a smaller "bio-battery" using several dozen artificial cells. The tiny bio-batteries would only need to be about -inch thick to produce the small voltages needed to power tiny electrical devices such as retinal implants or other prostheses.

Although the engineers came up with a design, it will still be some time before the artificial cells are actually built. For one thing, they still need a power source before they could start producing electricity. LaVan speculates the cells could be powered in a way similar to their natural counterparts. It's possible, he said, that bacteria could be employed to recycle ATP responsible for transferring energy within the cell using glucose, a common source of chemical energy derived from food.

With an energy source in place, the artificial cells could one day power medical implants and would provide a big advantage over battery-operated devices. "If it breaks, there are no toxins released into your system," said Xu. "It would be just like any other cell in your body."


'/>"/>

Contact: Suzanne Taylor Muzzin
suzanne.taylormuzzin@yale.edu
203-432-8555
Yale University
Source:Eurekalert

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. Texas researchers and educators head for Antarctica
3. MGH researchers describe new way to identify, evolve novel enzymes
4. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
5. U of MN researchers discover noninvasive diagnostic tool for brain diseases
6. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
7. Researchers discover new strategies for antibiotic resistance
8. Researchers find new taste in fruit flies: carbonated water
9. Binghamton University researchers investigate evolving malaria resistance
10. UIC researchers find promising new targets for antibiotics
11. Researchers develop simple method to create natural drug products
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/6/2017)... 2017 RAM Group , Singaporean ... breakthrough in biometric authentication based on a ... to perform biometric authentication. These new sensors are based ... by Ram Group and its partners. This sensor will ... chains and security. Ram Group is a next ...
(Date:4/13/2017)... UBM,s Advanced Design and Manufacturing event in ... and evolving technology through its 3D Printing and Smart ... the expo portion of the event and feature a ... on trending topics within 3D printing and smart manufacturing. ... will take place June 13-15, 2017 at the Jacob K. ...
(Date:4/11/2017)... NXT-ID, Inc. (NASDAQ:   NXTD ) ... appointment of independent Directors Mr. Robin D. Richards ... Directors, furthering the company,s corporate governance and expertise. ... Gino Pereira , Chief Executive ... their guidance and benefiting from their considerable expertise as we ...
Breaking Biology News(10 mins):
(Date:8/15/2017)... ... 15, 2017 , ... JULABO USA introduces its new website ... makes it easy to navigate through the site whether you’re in the office, ... information, educational industry content and visit the company’s social media accounts, all on ...
(Date:8/14/2017)... , ... August 14, 2017 , ... ... essential device-to-computer interconnect using USB or PCI Express, announced the release of SYZYGY™, ... is intended to satisfy the need for a compact, low cost, low pin-count, ...
(Date:8/11/2017)... ROCKVILLE, Md. , Aug. 11, 2017 ... in a New York Times article regarding ... 9.2 billion, according to Kalorama Information.  The ... an App for That"  used information ... Remote Patient Monitoring & Telemedicine Market  (Sleep, ...
(Date:8/11/2017)... ... August 11, 2017 , ... Algenist continues to disrupt the skincare ... like never before. , Collagen is the key structural element skin needs to ... Collagen™, which include: , First to market with proprietary ...
Breaking Biology Technology: