Navigation Links
Researchers describe 'implausible' chemistry that produces herbicidal compound
Date:6/12/2009

CHAMPAIGN, Ill. A soil microbe that uses chemical warfare to fight off competitors employs an unusual chemical pathway in the manufacture of its arsenal, researchers report, making use of an enzyme that can do what no other enzyme is known to do: break a non-activated carbon-carbon bond in a single step.

Their study, appearing this week in the journal Nature, provides the first three-dimensional structure of the enzyme, hydroxyethylphosphonate dioxygenase (HEPD) and proposes a mechanism by which it performs its task.

University of Illinois researchers first reported the enzyme in Nature Chemical Biology in 2007, said Wilfred van der Donk, an author on both papers with microbiologist William Metcalf.

"Our team discovered this very implausible chemical reaction," van der Donk said. "And the more we learned about it the more unusual it became. The enzyme is unusual because it breaks a carbon-carbon bond without needing anything except oxygen."

The study is important because HEPD catalyzes a critical step in the chemical pathway that produces phosphinothricin (PT), a bacterial compound that is widely used as an agricultural herbicide. This compound, which is a component of two top-selling weed killers (Liberty and Basta), is effective when used with transgenic crops that have a PT-resistance gene inserted into their DNA. The resistance gene also comes from the bacteria that produce PT. It allows the bacteria (which belong to the genus Streptomyces) to emit the antibiotic to kill off their competitors without killing themselves. Similarly, corn and other crops that contain the resistance gene are able to withstand PT-based herbicides that kill the weeds around them.

The new findings are part of an ongoing exploration at Illinois of naturally produced molecules that contain carbon-phosphorus (C-P) bonds. Although little understood, these phosphonates (which contain C-P bonds) and phosphinates (with C-P-C bonds) are already widely used in agriculture and medicine. This class of compounds includes the herbicide glyphosate, the osteoporosis treatment alendronate, the antimalarial drug fosmidomycin and the antibiotics fosfomycin, dehydrophos and plumbemycin.

Whether man-made or naturally produced, phosphonates and phosphinates are structurally similar to other compounds used by enzymes in nature. They sometimes bind to the same enzymes and thus can inhibit ordinary cellular processes in bacteria or other organisms. This makes them attractive candidates for the development of new antibiotics, said van der Donk, a principal investigator on the study with Metcalf and biochemistry professor Satish Nair.

Understanding how bacteria synthesize these compounds also enables the scientists to predict how bacteria might develop resistance to any new drugs that are developed, he said.

"Knowing how a compound is made may allow you to make an analog that can overcome that resistance," van der Donk said. "That's the game that's been played with penicillin for the last 40 years. Every time a bacterial strain becomes resistant to one penicillin, scientists tinker with the structure so that the organism is susceptible again."

The researchers hope the new findings will spur the development of much smaller, cheaper and more efficient synthetic catalysts that can also sever C-C bonds in one step.

"Every time we find something new in nature it's an inspiration to see if we can copy that reactivity with a small molecule," van der Donk said.


'/>"/>

Contact: Diana Yates, Life Sciences Editor
diya@illinois.edu
217-333-5802
University of Illinois at Urbana-Champaign
Source:Eurekalert  

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. Texas researchers and educators head for Antarctica
3. MGH researchers describe new way to identify, evolve novel enzymes
4. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
5. U of MN researchers discover noninvasive diagnostic tool for brain diseases
6. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
7. Researchers discover new strategies for antibiotic resistance
8. Researchers find new taste in fruit flies: carbonated water
9. Binghamton University researchers investigate evolving malaria resistance
10. UIC researchers find promising new targets for antibiotics
11. Researchers develop simple method to create natural drug products
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Researchers describe 'implausible' chemistry that produces herbicidal compound
(Date:10/4/2017)... a global clinical research organization (CRO), announces the launch of Shadow, ... 2017. Shadow is designed to assist medical writers and biometrics teams ... European Medicines Agency (EMA) in meeting the requirements for de-identifying clinical ... ... Tom ...
(Date:6/30/2017)... Today, American Trucking Associations announced Seeing ... and eye tracking software, became the newest member ... "Artificial intelligence and advanced sensing algorithms ... driver,s attentiveness levels while on the road.  Drivers ... fatigue and prevent potential accidents, which could lead ...
(Date:5/16/2017)... 16, 2017  Veratad Technologies, LLC ( www.veratad.com ), ... and identity verification solutions, announced today they will participate ... May 15 thru May 17, 2017, in ... Trade Center. Identity impacts the lives ... today,s quickly evolving digital world, defining identity is critical ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... Singh Biotechnology today announced that ... SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) B VHH13 ... cross the cell membrane and bind intracellular STAT3 and inhibit its function. Dysregulation ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that ... Polymerized Liposomal Nanoparticle), a technology developed in collaboration with Children’s Hospital Los ...
(Date:10/10/2017)... ... 10, 2017 , ... Dr. Bob Harman, founder and CEO of VetStem ... The event entitled “Stem Cells and Their Regenerative Powers,” was held ... Harman, DVM, MPVM was joined by two human doctors: Peter B. Hanson, M.D., Chief ...
(Date:10/10/2017)... 2017 SomaGenics announced the receipt of a ... RealSeq®-SC (Single Cell), expected to be the first commercially ... microRNAs) from single cells using NGS methods. The NIH,s ... accelerate development of approaches to analyze the heterogeneity of ... techniques for measuring levels of mRNAs in individual cells ...
Breaking Biology Technology: