Navigation Links
Researchers create self-assembling nanodevices that move and change shape on demand
Date:6/22/2010

BOSTON, Mass. (June 20, 2010) By emulating nature's design principles, a team at Harvard's Wyss Institute for Biologically Inspired Engineering, Harvard Medical School and Dana-Farber Cancer Institute has created nanodevices made of DNA that self-assemble and can be programmed to move and change shape on demand. In contrast to existing nanotechnologies, these programmable nanodevices are highly suitable for medical applications because DNA is both biocompatible and biodegradable.

The work appears in the June 20 advance online Nature Nanotechnology.

Built at the scale of one billionth of a meter, each device is made of a circular, single-stranded DNA molecule that, once it has been mixed together with many short pieces of complementary DNA, self-assembles into a predetermined 3D structure. Double helices fold up into larger, rigid linear struts that connect by intervening single-stranded DNA. These single strands of DNA pull the struts up into a 3D formmuch like tethers pull tent poles up to form a tent. The structure's strength and stability result from the way it distributes and balances the counteracting forces of tension and compression.

This architectural principleknown as tensegrityhas been the focus of artists and architects for many years, but it also exists throughout nature. In the human body, for example, bones serve as compression struts, with muscles, tendons and ligaments acting as tension bearers that enable us to stand up against gravity. The same principle governs how cells control their shape at the microscale.

"This new self-assembly based nanofabrication technology could lead to nanoscale medical devices and drug delivery systems, such as virus mimics that introduce drugs directly into diseased cells," said co-investigator and Wyss Institute director Don Ingber. A nanodevice that can spring open in response to a chemical or mechanical signal could ensure that drugs not only arrive at the intended target but are also released when and where desired.

Further, nanoscopic tensegrity devices could one day reprogram human stem cells to regenerate injured organs. Stem cells respond differently depending on the forces around them. For instance, a stiff extracellular matrixthe biological glue surrounding cellsfabricated to mimic the consistency of bone signals stem cells to become bone, while a soupy matrix closer to the consistency of brain tissue signals the growth of neurons. Tensegrity nanodevices "might help us to tune and change the stiffness of extracellular matrices in tissue engineering someday," said first author Tim Liedl, who is now a professor at Ludwig-Maximilians-Universitt in Munich.

"These little Swiss Army knives can help us make all kinds of things that could be useful for advanced drug delivery and regenerative medicine," said lead investigator William Shih, Wyss core faculty member and associate professor of biological chemistry and molecular pharmacology at HMS and Dana-Farber Cancer Institute. "We also have a handy biological DNA Xerox machine that nature evolved for us," making these devices easy to manufacture.

This new capability "is a welcome element in the structural DNA nanotechnology toolbox," said Ned Seeman, professor of chemistry at New York University.


'/>"/>

Contact: David Cameron
david_cameron@hms.harvard.edu
617-432-0441
Harvard Medical School
Source:Eurekalert

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. Texas researchers and educators head for Antarctica
3. MGH researchers describe new way to identify, evolve novel enzymes
4. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
5. U of MN researchers discover noninvasive diagnostic tool for brain diseases
6. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
7. Researchers discover new strategies for antibiotic resistance
8. Researchers find new taste in fruit flies: carbonated water
9. Binghamton University researchers investigate evolving malaria resistance
10. UIC researchers find promising new targets for antibiotics
11. Researchers develop simple method to create natural drug products
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/16/2017)...   Bridge Patient Portal , an enterprise ... EMR Systems , an electronic medical record solutions ... established a partnership to build an interface between ... Centricity™ products, including Centricity Practice Solution (CPS), Centricity ... new integrations will allow healthcare delivery networks using ...
(Date:4/24/2017)... Janice Kephart , former 9/11 ... Partners, LLP (IdSP) , today issues the following ... March 6, 2017 Executive Order: Protecting the ... be instilled with greater confidence, enabling the reactivation ... applications are suspended by until at least July ...
(Date:4/18/2017)...  Socionext Inc., a global expert in SoC-based imaging and computing ... M820, which features the company,s hybrid codec technology. A demonstration utilizing ... Inc., will be showcased during the upcoming Medtec Japan at Tokyo ... Las Vegas Convention Center April 24-27. ... Click here for an image ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... LINDA, CA (PRWEB) , ... October 11, 2017 ... ... to upregulate any gene in its endogenous context, enabling overexpression experiments and avoiding ... (CRISPRa) system with small RNA guides is transformative for performing systematic gain-of-function studies. ...
(Date:10/11/2017)... LAGUNA HILLS, Calif. , Oct. 11, 2017 /PRNewswire/ ... London (ICR) and University of ... tool to risk-stratify patients with multiple myeloma (MM), in a ... . The University of Leeds is ... Myeloma UK, and ICR will perform the testing services to ...
(Date:10/10/2017)... Angeles, CA (PRWEB) , ... ... ... Inc., a development-stage cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) therapeutics, ... uses of targeted HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed in ...
(Date:10/10/2017)... ... October 10, 2017 , ... USDM ... firm for the life sciences and healthcare industries, announces a presentation by Subbu ... , The presentation, “Automating GxP Validation for Agile Cloud Platforms,” will present a ...
Breaking Biology Technology: