Navigation Links
Researchers create safer alternative to heparin
Date:8/17/2008

Troy, N.Y. Robert Linhardt has spent years stitching together minuscule carbohydrates to build a more pure and safer alternative to the commonly used and controversial blood thinner heparin. At the national conference of the American Chemical Society on August 17, 2008, Linhardt announced that his research team may have accomplished this task by building the first fully synthetic heparin. Their creation is the largest dose of heparin ever created in the lab.

Heparin is used around the globe and is among the most widely used drugs in American hospitals. The main source of this heparin is the intestines of foreign livestock and the risk of contamination from such sources is high, according to Linhardt. And as Linhardt and others around the globe worked toward an alternative, drug manufacturers worked to avoid contamination, but the risks proved too high, Linhardt said. In the spring of 2008, the search for a safer alternative to the common drug had reached a frantic pace after more than 80 people around the world died and hundreds became ill after they were administered what was believed to be contaminated batches of heparin.

Linhardt, who is the Ann and John H. Broadbent Jr. '59 Senior Constellation Professor of Biocatalysis and Metabolic Engineering at Rensselaer Polytechnic Institute, was on the international team that identified the suspected contaminant in the Chinese heparin, a structurally similar carbohydrate called oversulfated chondroitin sulfate.

"When we found the contamination, it was another sign that the way we currently manufacture heparin is simply unsafe," he said. "Unlike the current heparin that is harvested from possibly disease carrying animals in often very poor conditions, our fully synthetic heparin will be created in a pharmaceutical manufacturing environment from fermentation to packaging. This will give drug manufacturers extreme control over the safety and purity of the product."

Linhardt, together with Jian Liu of the University of North Carolina, discovered the synthetic "recipe" for heparin in 2006. Since that time he has worked to piece together the various molecules and grow a complex carbohydrate that is naturally created in the body in the lab. The carbohydrate backbone for the new heparin comes from the bacteria E. coli. The use of the common and easily grown bacteria makes this version of heparin much easier and faster to produce, according to Linhardt. The team used a process called chemoenzymatic synthesis that used specialized synthetic chemicals and natural enzymes expressed in E. coli to replicate the normal biosynthesis of natural heparin within the cell.

The dose that Linhardt and his team were able to produce with this method was a million times higher than any other alternative created to date. He will now continue to work with his partners to take the milligram dose that they have developed and expand it to kilograms. "Ultimately, drug companies are going to need to produce tons of this drug to keep up with global demand," he said. "Such levels of productions are further down the road. We think that in five years, it is very possible that this drug could reach human clinical trials."


'/>"/>

Contact: Jason Gorss
gorssj@rpi.edu
518-276-6098
Rensselaer Polytechnic Institute
Source:Eurekalert

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. Texas researchers and educators head for Antarctica
3. MGH researchers describe new way to identify, evolve novel enzymes
4. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
5. U of MN researchers discover noninvasive diagnostic tool for brain diseases
6. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
7. Researchers discover new strategies for antibiotic resistance
8. Researchers find new taste in fruit flies: carbonated water
9. Binghamton University researchers investigate evolving malaria resistance
10. UIC researchers find promising new targets for antibiotics
11. Researchers develop simple method to create natural drug products
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/24/2017)... -- EyeLock LLC, a leader of iris-based identity authentication ... solution on the latest Qualcomm® Snapdragon™ 835 mobile ... Congress 2017 (February 27 – March 2, ... Stand 3E10. The Snapdragon 835 ... combination of hardware, software and biometrics technologies ...
(Date:2/21/2017)... LONDON , February 21, 2017 ... um 70 Millionen US-Dollar wachsen. Nach einem Gespräch mit mehr ... es einige Hindernisse zu überwinden gilt, um diese Prognose ... ... unter anderem die Mobilisierung der finanziellen Mittel für die ...
(Date:2/13/2017)...  RSA Conference -- RSA, a Dell Technologies business, ... enhance fraud detection and investigation across digital environments ... & Risk Intelligence Suite. The new platform is ... from internal and external sources as well as ... from targeted cybercrime attacks. "Fraudsters are ...
Breaking Biology News(10 mins):
(Date:3/30/2017)... Genome Diagnostics Inc. (PGDx) today announced that it has three ... (AACR) Annual Meeting 2017, being held April 1-5, 2017, in ... that five scientists associated with PGDx—two co-founders and three scientific ... Science Award. ... Doug Ward , CEO of Personal Genome Diagnostics, ...
(Date:3/29/2017)... ... March 29, 2017 , ... ... organization dedicated to finding cures for inflammatory bowel diseases (IBD), and ReachMD ... to deliver exclusive content to ReachMD learners. , The partnership, which launched ...
(Date:3/29/2017)... Inc. (NASDAQ: VRML), a bio-analytical solutions company focused ... the fourth quarter and full year ended December ... year for us with our first clinical utility ... reimbursement progress with Medicare, positive medical policy coverage ... cleared our 2 nd generation product Overa ...
(Date:3/29/2017)... , March 29, 2017 "Surging application of ... by the government are expected to drive the growth ... The gesture recognition market is expected to be worth ... of 29.63% between 2017 and 2022. The touchless sensing ... by 2022, growing at a CAGR of 17.44% between ...
Breaking Biology Technology: