Navigation Links
Researchers create map of 'shortcuts' between all human genes

Some diseases are caused by single gene mutations. Current techniques for identifying the disease-causing gene in a patient produce hundreds of potential gene candidates, making it difficult for scientists to pinpoint the single causative gene. Now, a team of researchers led by Rockefeller University scientists have created a map of gene "shortcuts" to simplify the hunt for disease-causing genes.

The investigation, spearheaded by Yuval Itan, a postdoctoral fellow in the St. Giles Laboratory of Human Genetics of Infectious Diseases, has led to the creation of what he calls the human gene connectome, the full set of distances, routes (the genes on the way), and degrees of separation, between any two human genes. Itan, a computational biologist, says the computer program he developed to generate the connectome uses the same principles that GPS navigation devices use to plan a trip between two locations. The research is reported in the online early edition of the journal Proceedings of the National Academy of Sciences.

"High throughput genome sequencing technologies generate a plethora of data, which can take months to search through," says Itan. "We believe the human gene connectome will provide a shortcut in the search for disease-causing mutations in monogenic diseases."

Itan and his colleagues, including researchers from the Necker Hospital for Sick Children, the Pasteur Institute in Paris, and Ben-Gurion University in Israel, designed applications for the use of the human gene connectome. They began with a gene called TLR3, which is important for resistance to herpes simplex encephalitis, a life-threatening infection from the herpes virus that can cause significant brain damage in genetically susceptible children. Researchers in the St. Giles lab, headed by Jean-Laurent Casanova, previously showed that children with HSE have mutations in TLR3 or in genes that are closely functionally related to TLR3. In other words, these genes are located at a short biological distance from TLR3. As a result, novel herpes simplex encephalitis-causing genes are also expected to have a short biological distance from TLR3.

To test how well the human gene connectome could predict a disease-causing gene, the researchers sequenced exomes all DNA of the genome that is coding for proteins of two patients recently shown to carry mutations of a separate gene, TBK1.

"Each patient's exome contained hundreds of genes with potentially morbid mutations," says Itan. "The challenge was to detect the single disease-causing gene." After sorting the genes by their predicted biological proximity to TLR3, Itan and his colleagues found TBK1 at the top of the list of genes in both patients. The researchers also used the TLR3 connectome the set of all human genes sorted by their predicted distance from TLR3 to successfully predict two other genes, EFGR and SRC, as part of the TLR3 pathway before they were experimentally validated, and applied other gene connectomes to detect Ehlers-Danlos syndrome and sensorineural hearing loss disease causing genes.

"The human gene connectome is, to the best of our knowledge, the only currently available prediction of the specific route and distance between any two human genes of interest, making it ideal to solve the needle in the haystack problem of detecting the single disease causing gene in a large set of potentially fatal genes," says Itan. "This can now be performed by prioritizing any number of genes by their biological distance from genes that are already known to cause the disease.

"Approaches based on the human gene connectome have the potential to significantly increase the discovery of disease-causing genes for diseases that are genetically understood in some patients as well as for those that are not well studied. The human gene connectome should also progress the general field of human genetics by predicting the nature of unknown genetic mechanisms."


Contact: Joseph Bonner
Rockefeller University

Related biology news :

1. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
2. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
3. Researchers attempt to solve problems of antibiotic resistance and bee deaths in one
4. UNH researchers find African farmers need better climate change data to improve farming practices
5. Ottawa researchers to lead world-first clinical trial of stem cell therapy for septic shock
6. Researchers uncover molecular pathway through which common yeast becomes fungal pathogen
7. Researchers print live cells with a standard inkjet printer
8. Columbia Engineering and Penn researchers increase speed of single-molecule measurements
9. Researchers reveal how a single gene mutation leads to uncontrolled obesity
10. Researchers discover novel therapy for Crohns disease
11. New paper by Notre Dame researchers describes method for cleaning up nuclear waste
Post Your Comments:
(Date:11/9/2015)... Nov. 9, 2015  Synaptics Inc. (NASDAQ: SYNA ... announced broader entry into the automotive market with a ... the pace of consumer electronics human interface innovation. Synaptics, ... ideal for the automotive industry and will be implemented ... Europe , Japan , ...
(Date:10/29/2015)... Va. , Oct. 29, 2015 Daon, ... today that it has released a new version of ... customers in North America have ... IdentityX v4.0 also includes a FIDO UAF certified ... are already preparing to activate FIDO features. These customers ...
(Date:10/27/2015)... , Oct. 27, 2015 In the present ... of concern for various industry verticals such as banking, ... to the growing demand for secure & simplified access ... ,sectors, such as hacking of bank accounts, misuse of ... equipment such as PC,s, laptops, and smartphones are expected ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... , Nov. 24, 2015  Clintrax Global, Inc., a worldwide provider ... , today announced that the company has set a new ... 391% quarter on quarter growth posted for Q3 of 2014 to ... and Mexico , with the establishment of an ... 2015. --> United Kingdom and ...
(Date:11/24/2015)... 2015 SHPG ) announced today that ... Jaffray 27 th Annual Healthcare Conference in New ... 8:30 a.m. EST (1:30 p.m. GMT). --> SHPG ) ... participate in the Piper Jaffray 27 th Annual Healthcare Conference ... December 1, 2015, at 8:30 a.m. EST (1:30 p.m. GMT). ...
(Date:11/24/2015)... SAN FRANCISCO , Nov. 24, 2015 /PRNewswire/ ... today announced that Emily Leproust, Ph.D., Twist Bioscience ... Piper Jaffray Healthcare Conference on December 1, 2015 ... Palace Hotel in New York City. ... . Twist Bioscience is on ...
(Date:11/24/2015)... LAVAL, QC , Nov. 24, 2015 /CNW Telbec/ - ... the "Corporation") announced today that Mr. Pierre Laurin , ... a corporate presentation at the upcoming Piper Jaffray 27 th ... York Palace Hotel, on December 1-2, 2015. ... be available for one-on-one meetings throughout the day. The presentation ...
Breaking Biology Technology: