Navigation Links
Researchers characterize stem cell function

The promise of stem cells lies in their unique ability to differentiate into a multitude of different types of cells. But in order to determine how to use stem cells for new therapeutics, scientists and engineers need to answer a fundamental question: if a stem cell changes to look like a certain type of cell, how do we know if it will behave like a certain type of cell?

Researchers at Northwestern University's McCormick School of Engineering are the first to fully characterize a special type of stem cell, endothelial progenitor cells (EPCs) that exist in circulating blood, to see if they can behave as endothelial cells in the body when cultured on a bioengineered surface.

The results, published online in the journal Stem Cells show promise for a new generation of tissue-engineered vascular grafts which could improve the success rate of surgery for peripheral arterial disease. Peripheral arterial disease is estimated to affect one in every 20 Americans over the age of 50, a total of 8 to 12 million people.

"Normally, stem cells are not studied in the context of improving vascular grafts for bypass surgery. Therefore, we had to develop new tests to assess their use in this application," says Guillermo Ameer, senior author of the paper and associate professor of biomedical engineering and surgery. "We looked at the function of the cells on a citric acid-based polymer, which will be the basis for a new generation of bioengineered vascular grafts."

In the study, Josephine Allen, then a graduate student in Ameer's lab, and colleagues isolated endothelial progenitor cells from eight tablespoons of blood. In approximately half of the attempts, the team was able to isolate the EPCs to expand to make millions of endothelial cells that can behave like the cells of a blood vessel.

Once the endothelial-like cell colonies were established, the research team performed a battery of tests to examine the properties and functionality of the cell.

"These new tests show that these endothelial-like cells can inhibit blood clotting and can prevent platelets from adhering to their surface," says Ameer. "But if you antagonize the cells or stimulate them, they will also respond the same way that an endothelial cell would and will clot blood if needed."

The study is an important step in identifying methods to build a tissue-engineered vascular graft. Synthetic grafts, used to treat common diseases such as peripheral arterial disease, have lower success rates when used in small-diameter arteries, such as those found in the leg.

"These small-diameter synthetic grafts are more prone to blood clots and other complications, especially over time," Ameer says. "It's thought that a tissue-engineered graft would allow us to preserve many of the body's natural defenses against these complications."


Contact: Kyle Delaney
Northwestern University

Related biology news :

1. Penn researchers identify immune cells that fight parasites may promote allergies and asthma
2. VAI researchers develop tool to help study prostate cancer
3. Researchers examine plants ability to identify, block invading bacteria
4. Community involvement important in fight against childhood obesity, according to UTHealth researchers
5. Exercise counters negative effects of weight regain, researchers find
6. Rice researchers make graphene hybrid
7. New dinosaur rears its head; U-M researchers part of team announcing find
8. Discovery in legumes could reduce fertilizer use, aid environment: Stanford researchers
9. Researchers fishing for cancer cure discover active DHA derivatives
10. Researchers determine how ATP, molecule bearing the fuel of life, is broken down in cells
11. NOAA, NASA and Old Dominion researchers measure impacts of changing climate on ocean biology
Post Your Comments:
(Date:11/17/2015)... 2015 Paris from 17 ... Paris from 17 th until 19 ... innovation leader, has invented the first combined scanner in the ... same scanning surface. Until now two different scanners were required: one ... capture both on the same surface. This innovation is ...
(Date:11/16/2015)... , Nov 16, 2015  Synaptics Inc. (NASDAQ: ... interface solutions, today announced expansion of its TDDI ... touch controller and display driver integration (TDDI) ... smartphones. These new TDDI products add to the ... resolution), TD4302 (WQHD resolution), and TD4322 (FHD resolution) ...
(Date:11/11/2015)... , Nov. 11, 2015   MedNet Solutions , an ... of clinical research, is pleased to announce that it will ... Trials (PCT) event, to be held November 17-19 in ... to view live demonstrations of iMedNet , ... how iMedNet has been able to deliver time ...
Breaking Biology News(10 mins):
(Date:12/1/2015)... Dec. 01, 2015 ... of the "2016 Europe Cell Surface ... Technologies, Competitive Strategies, Opportunities for Suppliers--France, Germany, ... offering. --> ) has ... Europe Cell Surface Markers: Country Volume and ...
(Date:12/1/2015)... -- Symic, a clinical-stage biotherapeutics company developing multiple compounds that ... that it has secured $25 million in a Series ... lead candidates SB-030 and SB-061. The financing was led ... existing major investors, as well as several new investors. ... Symic to over $43 million since being founded in ...
(Date:12/1/2015)... 1, 2015 ... "2016 U.K. Virology and Bacteriology Testing Market: ... Tests, Supplier Shares by Test, Innovative Technologies, ... offering.  --> ) has ... Virology and Bacteriology Testing Market: Sales and ...
(Date:11/30/2015)... radiology technique shows promise for helping morbidly obese patients lose ... presented today at the annual meeting of the Radiological Society ... --> --> Gastric artery embolization ... way to stop bleeding in emergency situations, but the idea ... is new. Mubin Syed , M.D., interventional radiologist ...
Breaking Biology Technology: