Navigation Links
Researchers capture structure of key part of deadly Nipah virus

What began as a summer internship project designed for an undergraduate student evolved into a one-year study of one of the deadliest, but little known viruses. Researchers at The Scripps Research Institute (TSRI) have now solved the structure of a key protein in the Nipah virus, which could pave the way for the development of a much-needed antiviral drug.

"This structure shows how key pieces of the virus's machinery are oriented and tethered together," said TSRI Professor Erica Ollmann Saphire, senior author of the study. "This is part of a larger program to illuminate how these deadly viruses replicate."

The Nipah virus is an emerging pathogen found in Southeast Asia, particularly Malaysia, Bangladesh and India. The first outbreak was in 1997, followed by yearly outbreaks since then, with increasing mortality rates.

Carried by the flying fruit bat, the virus causes only mild illness in pigs, dogs, cats, horses, goats and sheep, which also spread the disease. But in humans, lethality has ranged from an initial 40 percent to 70 and, in some cases, even 100 percent. There are no therapeutics for the virus and no vaccines for humans.

"It's the scariest virus you've never heard of," said Jessica Bruhn, a graduate student in TSRI Professor Erica Ollmann Saphire's lab, noting that the movie Contagion, a medical thriller that came out in 2011, is based on outbreaks of the Nipah virus.

Hot on the Trail

Bruhn, first author of the new study, which was published recently online ahead of print by the Journal of Virology, initially designed this study as a summer project in 2012 for Katherine Barnett, then an undergraduate student in the SINAPSE program and also a co-author of the paper.

Bruhn and Barnett helped launch the work cloning the genes and working on the data. Barnett left to attend graduate school at Harvard University and Bruhn and colleagues continued working on the project, focusing on the P protein, a key component of the viral replication complex, which is essential for the virus to replicate its RNA.

"If you can prevent the virus from making more RNA, then it can't replicate, which is a good strategy for developing antiviral medications," Bruhn said.

In X-ray crystallography, scientists manipulate a protein or some other molecule so that a crystal forms. This crystal is then placed in a beam of X-rays, which diffract when they strike the atoms in the crystal. Based on the pattern of diffraction, scientists can usually reconstruct the shape of the original moleculebut in this project, the challenge was interpreting the data.

Luckily, Bruhn attended a crystallography workshop in Chicago at the Argonne National Laboratory and there she met experts in the field and learned new techniques, such as ab-initio modeling, which leverages computational structure prediction. The team used a software pipeline called AMPLE developed by the Rutherford Appleton Lab and the University of Liverpool to generate models and finally determine the structure.

Echoes of Other Viruses

When the scientists solved the crystal structure of the P protein, they found that it forms a tetramer, with four proteins that join to form a single unit.

"It was surprising to us that this structure is so similar to those from measles and mumps viruses, even though they are only 5 to 26% identical in sequence," Bruhn said. "If two proteins have high sequence identity then you would expect that they would have similar 3D structures, but to see such similarity in proteins with such low identity was surprising."

She said this speaks to the importance of structural conservation over sequence conservation meaning that regardless of whether a protein has an identical sequence of amino acids or not, the structure could still be similar, especially when that structure has the important function of replicating the virus's RNA genome.

The team is continuing to work on understanding the virus and why it is so deadly. Since the virus is a biosafety level 4 pathogen, TSRI researchers can only look at parts of it but not the entire virus, so the scientists are collaborating with the Centers for Disease Control and Prevention to look at the role of this structure in infection. The scientists will also look into resolving discrepancies with lower-resolution data published by a group of French researchers positing the structure was a trimer, with three proteins.


Contact: Mika Ono
Scripps Research Institute

Related biology news :

1. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
2. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
3. Researchers attempt to solve problems of antibiotic resistance and bee deaths in one
4. UNH researchers find African farmers need better climate change data to improve farming practices
5. Ottawa researchers to lead world-first clinical trial of stem cell therapy for septic shock
6. Researchers uncover molecular pathway through which common yeast becomes fungal pathogen
7. Researchers print live cells with a standard inkjet printer
8. Columbia Engineering and Penn researchers increase speed of single-molecule measurements
9. Researchers reveal how a single gene mutation leads to uncontrolled obesity
10. Researchers discover novel therapy for Crohns disease
11. New paper by Notre Dame researchers describes method for cleaning up nuclear waste
Post Your Comments:
Related Image:
Researchers capture structure of key part of deadly Nipah virus
(Date:10/29/2015)... , Oct. 29, 2015  The J. Craig ... report titled, "DNA Synthesis and Biosecurity: Lessons Learned and ... Department of Health and Human Services guidance for synthetic ... 2010. --> --> ... also has the potential to pose unique biosecurity threats. ...
(Date:10/29/2015)... OXFORD, Connecticut , October 29, 2015 /PRNewswire/ ... "Company"), a biometric authentication company focused on the ... Wocket® smart wallet announces that StackCommerce, a leading ... will be featuring the Wocket® smart wallet on ... NXTD ) ("NXT-ID" or the "Company"), a ...
(Date:10/27/2015)... Oct. 27, 2015 Synaptics Inc. (NASDAQ: SYNA ... that Google has adopted the Synaptics ® ClearPad ... to power its newest flagship smartphones, the Nexus 5X ... --> --> Synaptics ... provide strategic collaboration in the joint development of next ...
Breaking Biology News(10 mins):
(Date:11/27/2015)... ... November 27, 2015 , ... Pittcon is pleased to ... presentations offered in symposia, oral sessions, workshops, awards, and posters. The core ... of applications such as, but not limited to, biotechnology, biomedical, drug discovery, environmental, ...
(Date:11/26/2015)... CHESHAM , England , November 26, ... Lightpoint Medical, an innovative medical device company specializing in ... Euro grant from the European Commission as part of the ... enabling the company to carry out a large-scale clinical trial ... -->      (Logo: , ...
(Date:11/25/2015)... 2015 2 nouvelles études permettent d ... les différences entre les souches bactériennes retrouvées dans la plaque ... êtres humains . Ces recherches  ouvrent une nouvelle ... en charge efficace de l,un des problèmes de ... .    --> 2 nouvelles études permettent ...
(Date:11/25/2015)... 2015  Neurocrine Biosciences, Inc. (Nasdaq: NBIX ) ... CEO of Neurocrine Biosciences, will be presenting at the ... New York . .   ... 5 minutes prior to the presentation to download or ... will be available on the website approximately one hour ...
Breaking Biology Technology: