Navigation Links
Researchers advance knowledge of little 'nano-machines' in our body
Date:12/18/2008

Montreal, December 18, 2008 A discovery by Canada-U.S. biophysicists will improve the understanding of ion channels, akin to little 'nano-machines' or 'nano-valves' in our body, which when they malfunction can cause genetic illnesses that attack muscles, the central nervous system and the heart.

As reported in the current issue of the Proceedings of the National Academy of Sciences (PNAS), researchers from the Universit de Montral and the University of Chicago have developed a novel method to detect the movement of single proteins that control the ion exchange between the cells and their environment.

Much like an iris in a camera, these proteins open and close and thereby control the movement of ions between the cells and their environment, which allows the transmission of electrical signals along our nerve cells. The size of these small valves is about a million times smaller than the pupil of a human eye. The new technique will allow scientist to measure one single ion channel at the time and investigate how different parts inside the ion channels communicate.

The research team was led by Rikard Blunck, a professor from the Universit de Montral's Department of Physics, M.Sc. student Hugo McGuire and their collaborators at the University of Chicago, Francisco Bezanilla and H. Clark Hyde.

"Our discovery will help advance the basic understanding of ion channels. These membrane proteins mark a major drug target, since they play a central role in the entire body and mutations in their genes cause many severe genetic illnesses," says Dr. Blunck, who was recruited to the Universit de Montral from UCLA to become the Canada Research Chair on Molecular Mechanisms of Membrane Proteins and member of the Groupe d'tude des protines membranaires, a multidisciplinary research group that studies protein functions and their involvement in physiological systems.

The PNAS study is important, as biophysics researchers seek to better understand the structure and movement of ion channels because the malfunctioning of these channels is implicated in a number of diseases.

For this study, the research team investigated potassium channels built out of four identical subunits, which form a pore through the membrane that can open and close in order to allow or block ion conduction.

They solved a long debate in the field: Do the four subunits of a K+ channel function independently or in a concerted action?

To answer this question, the physicists developed a fluorescence spectroscopy technique that allows distinguishing between the subunits so that one can follow, for the first time, the movement of each of the four subunits, information that was lost in previous measurements. They found that the four molecules act together, which explains why no intermediate steps are found in the electrical current measured in electrophysiological experiments.


'/>"/>

Contact: Sylvain-Jacques Desjardins
sylvain-jacques.desjardins@umontreal.ca
514-343-7593
University of Montreal
Source:Eurekalert  

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. Texas researchers and educators head for Antarctica
3. MGH researchers describe new way to identify, evolve novel enzymes
4. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
5. U of MN researchers discover noninvasive diagnostic tool for brain diseases
6. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
7. Researchers discover new strategies for antibiotic resistance
8. Researchers find new taste in fruit flies: carbonated water
9. Binghamton University researchers investigate evolving malaria resistance
10. UIC researchers find promising new targets for antibiotics
11. Researchers develop simple method to create natural drug products
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Researchers advance knowledge of little 'nano-machines' in our body
(Date:4/28/2016)... FRANCISCO and BANGALORE, India , ... of EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... provider, today announced a global partnership that will ... way to use mobile banking and payment services. ... is a key innovation area for financial services, but it ...
(Date:4/19/2016)... , UAE, April 20, 2016 ... be implemented as a compact web-based "all-in-one" system solution ... the biometric fingerprint reader or the door interface with ... of modern access control systems. The minimal dimensions of ... ID readers into the building installations offer considerable freedom ...
(Date:4/13/2016)... 2016  IMPOWER physicians supporting Medicaid patients in ... clinical standard in telehealth thanks to a new partnership ... platform, IMPOWER patients can routinely track key health measurements, ... index, and, when they opt in, share them with ... a local retail location at no cost. By leveraging ...
Breaking Biology News(10 mins):
(Date:5/23/2016)... -- Zimmer Biomet Holdings, Inc. (NYSE and SIX: ZBH), a ... of Directors has approved the payment of a quarterly cash ... The cash dividend of $0.24 per share will ... of record as of the close of business on June ... of the Board of Directors and may be adjusted as ...
(Date:5/23/2016)... LONDON , May 23, 2016 ... Boost Efficiency by 40% - Frontage Implement a Single ... Enforce Quality, Compliance and Traceability Within the Bioanalytical lab ... the United States and China ... deployed across its laboratory facilities. In addition to serving as the ...
(Date:5/23/2016)... ... May 23, 2016 , ... Foresight Institute ... announced the winners for the 2015 Foresight Institute Feynman Prizes. , These ... two categories, one for experiment and the other for theory in nanotechnology. Prof. ...
(Date:5/20/2016)... CA (PRWEB) , ... May 20, 2016 , ... The ... 10 of its most experienced veterinary clients have treated over 100 of their own ... edge technology to provide the highest level of care for their patients. , ...
Breaking Biology Technology: