Navigation Links
Research yields two 'firsts' regarding protein crucial to human cardiac function
Date:8/31/2012

TALLAHASSEE, Fla. -- Florida State University researchers led by physics doctoral student Campion Loong have achieved significant benchmarks in a study of the human cardiac protein alpha-tropomyosin, which is an essential, molecular-level component that controls the heart's contraction on every beat.

Using an imaging method called atomic force microscopy, Loong achieved two "firsts": the first direct imaging of individual alpha-tropomyosin molecules, which are very small roughly 40 nanometers long and the first demonstrated examples of a measure of the human cardiac protein's flexibility. From there, he established a baseline of how flexible a normal version of the protein is supposed to be in a healthy human heart.

"This basic research is important to broadening our understanding of how the human heart functions normally at the molecular level," Loong said. "The flexibility of alpha-tropomyosin dictates how effectively or properly the heart muscle will contract on each beat and has implications for keeping the heart free of cardiovascular disease.

"Before this study, we did not know how flexible this protein was," Loong said. "Using these results, now we can conduct subsequent studies to compare disease-related mutants of this protein to see how much they deviate from normal versions."

Loong served as the lead author of the paper "Persistence Length of Human Cardiac a-Tropomyosin Measured by Single Molecule Direct Probe Microscopy," which was published in the journal PLoS ONE. He conducted the research with physics Professor Huan-Xiang Zhou and biological science Professor P. Bryant Chase, both of Florida State.

When an electrical signal is generated in the heart to make it contract, calcium is released inside each heart muscle cell. The calcium then binds to a protein called troponin, and that triggers the "flexing movement" of alpha-tropomyosin, which allows another protein called myosin the motor protein to interact with the troponin/tropomyosin actin filaments. This series of events is what generates the heart's contraction that pumps blood. A subsequent removal of calcium inside each heart cell is what relaxes the heart, which allows the heart to fill with blood to be pumped on the next beat.

"Alpha-tropomyosin is a key element that makes the calcium signal either turn the heart on, making it contract, or turn it off, making it relax," Chase said. "There is an optimal range of flexibility of alpha-tropomyosin for the normal heart to function properly. The molecule can be too stiff or it can be too flexible, either of which could lead to cardiovascular disease. What we ultimately think is that evolution has tuned the mechanical properties of these proteins for optimal function in the heart."


'/>"/>

Contact: P. Bryant Chase
chase@bio.fsu.edu
850-644-0392
Florida State University
Source:Eurekalert  

Related biology news :

1. BUSM researchers find potential key to halt progression, reverse damage from emphysema
2. Researchers launch new Rust-Tracker to monitor deadly wheat fungus in 27 nations
3. Science research led in Gulf of Mexico by Penn State biologist to be honored with US award
4. University of Tennessee Space Institute researchers make clinical trials a virtual reality
5. £30 million boost for biomedical engineering research
6. New equipment is breath of fresh air for childrens lung researchers
7. Mount Sinai researchers solve mystery surrounding the death of two sisters nearly 50 years ago
8. Biomass characterization technology research highlighted in Industrial Biotechnology journal
9. Stanford researchers discover the anternet
10. By detecting smallest virus, researchers open possibilities for early disease detection
11. African research identifies strong candidate for possible single-dose malaria cure
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Research yields two 'firsts' regarding protein crucial to human cardiac function
(Date:1/12/2017)... 2017 A new report by Allied Market Research, titled, "Global ... technology market is expected to generate revenue of $10.72 billion by 2022, with an ... Reading ... Allied Market Research Logo ...      (Logo: http://photos.prnewswire.com/prnh/20140911/647229) In the year ...
(Date:1/6/2017)... 2017  SomaLogic announced today that it has ... by iCarbonX, the China -based ... Digital Health Ecosystem that can define each person,s ... biological, behavioral and psychological data, the Internet and ... SomaLogic will provide proteomics data and applications expertise ...
(Date:1/3/2017)... 2017 Onitor, provider of digital health technology ... an innovative biometric data-driven program designed to aid weight ... the 2017 Consumer Electronics Show (CES) in ... U.S., the World Health Organization (WHO), have identified lifestyle ... who are overweight or obese. WHO also states that ...
Breaking Biology News(10 mins):
(Date:1/19/2017)... DUBLIN , Jan 19, 2017 Research ... Market by Profiling Technology, Biomolecules, Cancer Type, Application - Global Opportunity ... ... Report, forecasts that the global market is projected to reach $15,737 ... of 13% from 2016 to 2022. Omic technologies ...
(Date:1/19/2017)... HOUSTON , Jan. 19, 2017 ... formation of its Medical/Clinical Advisory Board.  This new ... who enhance the range and depth of expertise ... its novel prenatal diagnostic tests.  These experts are ... guidance for the company,s product development and commercialization ...
(Date:1/19/2017)... Research and Markets ... has announced the addition of the ... 2025" report to their offering. Report ... provides a detailed analysis on current and future market trends to identify ... market values as the base numbers Key market trends ...
(Date:1/19/2017)... ... January 19, 2017 , ... November Research ... leading biopharmaceutical and medical device manufacturers and regulators, is proud to announce the ... 11-compliant email client designed to provide product vigilance departments with the flexibility and ...
Breaking Biology Technology: