Navigation Links
Research yields two 'firsts' regarding protein crucial to human cardiac function

TALLAHASSEE, Fla. -- Florida State University researchers led by physics doctoral student Campion Loong have achieved significant benchmarks in a study of the human cardiac protein alpha-tropomyosin, which is an essential, molecular-level component that controls the heart's contraction on every beat.

Using an imaging method called atomic force microscopy, Loong achieved two "firsts": the first direct imaging of individual alpha-tropomyosin molecules, which are very small roughly 40 nanometers long and the first demonstrated examples of a measure of the human cardiac protein's flexibility. From there, he established a baseline of how flexible a normal version of the protein is supposed to be in a healthy human heart.

"This basic research is important to broadening our understanding of how the human heart functions normally at the molecular level," Loong said. "The flexibility of alpha-tropomyosin dictates how effectively or properly the heart muscle will contract on each beat and has implications for keeping the heart free of cardiovascular disease.

"Before this study, we did not know how flexible this protein was," Loong said. "Using these results, now we can conduct subsequent studies to compare disease-related mutants of this protein to see how much they deviate from normal versions."

Loong served as the lead author of the paper "Persistence Length of Human Cardiac a-Tropomyosin Measured by Single Molecule Direct Probe Microscopy," which was published in the journal PLoS ONE. He conducted the research with physics Professor Huan-Xiang Zhou and biological science Professor P. Bryant Chase, both of Florida State.

When an electrical signal is generated in the heart to make it contract, calcium is released inside each heart muscle cell. The calcium then binds to a protein called troponin, and that triggers the "flexing movement" of alpha-tropomyosin, which allows another protein called myosin the motor protein to interact with the troponin/tropomyosin actin filaments. This series of events is what generates the heart's contraction that pumps blood. A subsequent removal of calcium inside each heart cell is what relaxes the heart, which allows the heart to fill with blood to be pumped on the next beat.

"Alpha-tropomyosin is a key element that makes the calcium signal either turn the heart on, making it contract, or turn it off, making it relax," Chase said. "There is an optimal range of flexibility of alpha-tropomyosin for the normal heart to function properly. The molecule can be too stiff or it can be too flexible, either of which could lead to cardiovascular disease. What we ultimately think is that evolution has tuned the mechanical properties of these proteins for optimal function in the heart."


Contact: P. Bryant Chase
Florida State University

Related biology news :

1. BUSM researchers find potential key to halt progression, reverse damage from emphysema
2. Researchers launch new Rust-Tracker to monitor deadly wheat fungus in 27 nations
3. Science research led in Gulf of Mexico by Penn State biologist to be honored with US award
4. University of Tennessee Space Institute researchers make clinical trials a virtual reality
5. £30 million boost for biomedical engineering research
6. New equipment is breath of fresh air for childrens lung researchers
7. Mount Sinai researchers solve mystery surrounding the death of two sisters nearly 50 years ago
8. Biomass characterization technology research highlighted in Industrial Biotechnology journal
9. Stanford researchers discover the anternet
10. By detecting smallest virus, researchers open possibilities for early disease detection
11. African research identifies strong candidate for possible single-dose malaria cure
Post Your Comments:
Related Image:
Research yields two 'firsts' regarding protein crucial to human cardiac function
(Date:11/30/2015)... 2015  BIOCLAIM announced today that is has ... Innovation Awards:  Healthcare Edition, an awards program from ... FierceHealthcare , and FierceMobileHealthcare ... the category of "Privacy and Cybersecurity." ... --> Photo - ...
(Date:11/26/2015)... -- Research and Markets ( ) has announced ... Technology and Patent Infringement Risk Analysis" report to ... --> Fingerprint sensors using capacitive technology represent a ... vendor Idex forecasts an increase of 360% of the ... of the fingerprint sensor market between 2014 and 2017 ...
(Date:11/20/2015)... NXTD ) ("NXT-ID" or the ... mobile commerce market and creator of the Wocket® smart ... recently interviewed on The RedChip Money Report ... on Bloomberg Europe , Bloomberg Asia, Bloomberg Australia, ... NXTD ) ("NXT-ID" or the "Company"), a biometric authentication ...
Breaking Biology News(10 mins):
(Date:11/30/2015)... -- Champions Oncology, Inc. (CSBR), engaged in the development of ... and use of oncology drugs, today announced that ... at the LD MICRO Investor Conference on Wednesday, December ... conference, held at the Luxe Sunset Bel Air Hotel ... feature 200 small/micro-cap companies and is expected to host ...
(Date:11/30/2015)...  HUYA Bioscience International, the leader in accelerating global ... today announced it has signed a Memorandum of Understanding ... collaboration between KDDF and HUYA with the ultimate goal ... for the global market. China,s ... innovative preclinical and clinical stage compounds. The company advances ...
(Date:11/30/2015)... Germany , November 30, 2015 ... Vienna, Austria to be held December 1-4, ... in Vienna, Austria to be ... owned subsidiary of Vycor Medical, Inc. ("Vycor") (OTCQB: VYCO), announced ... Therapy Suite at the 3rd European Congress of NeuroRehabilitation ...
(Date:11/30/2015)... and PETACH TIKVAH, Israel , Nov. 30, ... BCLI ), a leading developer of adult stem cell technologies ... Cell Therapeutics Ltd., has been awarded an additional grant of ... the Chief Scientist (OCS). This grant, the second this year, ... activities to approximately $1.8 million (approximately NIS7 million).  ...
Breaking Biology Technology: