Navigation Links
Research yields two 'firsts' regarding protein crucial to human cardiac function
Date:8/31/2012

TALLAHASSEE, Fla. -- Florida State University researchers led by physics doctoral student Campion Loong have achieved significant benchmarks in a study of the human cardiac protein alpha-tropomyosin, which is an essential, molecular-level component that controls the heart's contraction on every beat.

Using an imaging method called atomic force microscopy, Loong achieved two "firsts": the first direct imaging of individual alpha-tropomyosin molecules, which are very small roughly 40 nanometers long and the first demonstrated examples of a measure of the human cardiac protein's flexibility. From there, he established a baseline of how flexible a normal version of the protein is supposed to be in a healthy human heart.

"This basic research is important to broadening our understanding of how the human heart functions normally at the molecular level," Loong said. "The flexibility of alpha-tropomyosin dictates how effectively or properly the heart muscle will contract on each beat and has implications for keeping the heart free of cardiovascular disease.

"Before this study, we did not know how flexible this protein was," Loong said. "Using these results, now we can conduct subsequent studies to compare disease-related mutants of this protein to see how much they deviate from normal versions."

Loong served as the lead author of the paper "Persistence Length of Human Cardiac a-Tropomyosin Measured by Single Molecule Direct Probe Microscopy," which was published in the journal PLoS ONE. He conducted the research with physics Professor Huan-Xiang Zhou and biological science Professor P. Bryant Chase, both of Florida State.

When an electrical signal is generated in the heart to make it contract, calcium is released inside each heart muscle cell. The calcium then binds to a protein called troponin, and that triggers the "flexing movement" of alpha-tropomyosin, which allows another protein called myosin the motor protein to interact with the troponin/tropomyosin actin filaments. This series of events is what generates the heart's contraction that pumps blood. A subsequent removal of calcium inside each heart cell is what relaxes the heart, which allows the heart to fill with blood to be pumped on the next beat.

"Alpha-tropomyosin is a key element that makes the calcium signal either turn the heart on, making it contract, or turn it off, making it relax," Chase said. "There is an optimal range of flexibility of alpha-tropomyosin for the normal heart to function properly. The molecule can be too stiff or it can be too flexible, either of which could lead to cardiovascular disease. What we ultimately think is that evolution has tuned the mechanical properties of these proteins for optimal function in the heart."


'/>"/>

Contact: P. Bryant Chase
chase@bio.fsu.edu
850-644-0392
Florida State University
Source:Eurekalert  

Related biology news :

1. BUSM researchers find potential key to halt progression, reverse damage from emphysema
2. Researchers launch new Rust-Tracker to monitor deadly wheat fungus in 27 nations
3. Science research led in Gulf of Mexico by Penn State biologist to be honored with US award
4. University of Tennessee Space Institute researchers make clinical trials a virtual reality
5. £30 million boost for biomedical engineering research
6. New equipment is breath of fresh air for childrens lung researchers
7. Mount Sinai researchers solve mystery surrounding the death of two sisters nearly 50 years ago
8. Biomass characterization technology research highlighted in Industrial Biotechnology journal
9. Stanford researchers discover the anternet
10. By detecting smallest virus, researchers open possibilities for early disease detection
11. African research identifies strong candidate for possible single-dose malaria cure
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Research yields two 'firsts' regarding protein crucial to human cardiac function
(Date:1/25/2016)... SEATTLE , Jan. 25, 2016  Glencoe Software, ... biotech, pharma and publication industries, will provide the data ... Phenotypic Screening Centre (NPSC). ... Phenotypic analysis ... even whole organisms, allowing comparisons between states such as ...
(Date:1/20/2016)...   MedNet Solutions , an innovative SaaS-based eClinical ... research, is pleased to announce the attainment of record-setting ... result of the company,s laser focus on (and growing ... it,s comprehensive, easy-to-use and highly affordable cloud-based technology platform. ... MedNet growth achievements in 2015 include: , ...
(Date:1/13/2016)... January 13, 2016 ... addition of the  "India Biometrics Authentication ... Forecast (2015-2020)"  report to their ... has announced the addition of the  ... - Estimation & Forecast (2015-2020)" ...
Breaking Biology News(10 mins):
(Date:2/11/2016)... Feb. 11, 2016  Bioethics International, a not-for-profit organization focused ... developed, marketed and made accessible to patients around the world, ... had named the publication of the Good Pharma Scorecard ... is also featured as one of BMJ Open ,s ... year that are most frequently read. Ed Sucksmith ...
(Date:2/11/2016)... 11, 2016 --> ... "Company") (OTCQB: PSID), a life sciences company focused ... Thermomedics subsidiary, which markets the Caregiver® FDA-cleared non-contact ... in January 2016, including entering into agreements with ... sales growth, and establishing several near-term pipeline opportunities. ...
(Date:2/10/2016)... MONTREAL , Febr. 10, 2016 /PRNewswire/ - BioAmber Inc. ... is pleased to announce that Mitsui & Co. Ltd., ... bio-based succinic acid plant, is investing an additional CDN$25 ... equity, increasing its stake from 30% to 40%.  Mitsui ... of bio-succinic acid produced in Sarnia ...
(Date:2/10/2016)... ... February 10, 2016 , ... ... that it has joined the Human Vaccines Project, a public-private partnership to ... cancer. , The Human Vaccines Project brings together leading pharmaceutical and ...
Breaking Biology Technology: