Navigation Links
Research team uncovers root cause of multiple myeloma relapse
Date:9/18/2013

PHOENIX, Ariz. Sept. 18, 2013 Researchers have discovered why multiple myeloma, a difficult to cure cancer of the bone marrow, frequently recurs after an initially effective treatment that can keep the disease at bay for up to several years.

Working in collaboration with colleagues at Princess Margaret Hospital in Toronto, researchers from Mayo Clinic in Arizona and the Translational Genomics Research Institute (TGen) in Phoenix were part of the team that conducted the study published in the Sept. 9 issue of Cancer Cell.

The research team initially analyzed 7,500 genes in multiple myeloma cells to identify genes which when suppressed made cancer cells resistant to a common class of drugs called proteasome inhibitors such as bortezomib or carfilzomib. Then, the team studied bone marrow biopsies from patients to further understand their results. The process identified two genes (IRE1 and XBP1) that control response to the proteasome inhibitor and the mechanism underlying the drug resistance that is the barrier to cure.

The findings showed recurrence was due to an intrinsic resistance found in immature tumor progenitor (mother) cells is the root cause of the disease and also spawns relapse. The research demonstrates that although the visible cancer cells that make up most of the tumor are sensitive to the proteasome inhibitor drug, the underlying progenitor cells are untouched by this therapy. These progenitor cells then proliferate and mature to reboot the disease process, even in patients who appeared to be in complete remission.

"Our findings reveal a way forward toward a cure for multiple myeloma, which involves targeting both the progenitor cells and the plasma cells at the same time," says Rodger Tiedemann, M.D., a hematologist specializing in multiple myeloma and lymphoma at Princess Margaret. "Now that we know that progenitor cells persist and lead to relapse after treatment, we can move quickly into clinical trials, measure this residual disease in patients, and attempt to target it with new drugs or with drugs that may already exist."

"Some myeloma cells are too immature to be caught by the drugs and thus hide underground only to reemerge later," says Keith Stewart, M.B., Ch.B., Dean for Research at Mayo Clinic in Arizona and contributor to the study. "This study has wide implications in the search for a cure of this common blood cancer as this 'progenitor cell' will have to be targeted."

Jonathan Keats, Ph.D., head of TGen's Multiple Myeloma Research Laboratory, said: "This study, which leverages data generated at TGen as part of the Multiple Myeloma Genomics Initiative, shows how mutations acquired by multiple myeloma tumors can make a tumor resistant to specific therapies and highlights the importance of TGen's precision medicine approaches."

Dr. Tiedemann says: "If you think of multiple myeloma as a weed, then proteasome inhibitors are like a goat that eats the mature foliage above ground, producing a remission, but doesn't eat the roots, so that one day the weed returns."


'/>"/>

Contact: Steve Yozwiak
syozwiak@tgen.org
602-343-8704
The Translational Genomics Research Institute
Source:Eurekalert

Related biology news :

1. RIKEN and leading Indian institutions launch Joint Research Centers
2. Rensselaer researchers create accurate computer model of RNA tetraloop
3. Hypertension researcher encourages colleagues to expand their focus
4. Researchers hit virtual heads to make safer games
5. DiscoveRx Announces Launch of New Human Primary Cell-Based Panels for Oncology Research
6. Entomological Society of America names winners of Monsanto student travel and research awards
7. Research uncovers potential preventive for central line infection
8. UAlberta medical researchers discover how immune system kills healthy cells
9. Turfgrass research has a field day
10. UCI researchers fabricate new camouflage coating from squid protein
11. Researchers uncover genetic cause of childhood leukemia
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/6/2017)... , May 5, 2017 RAM ... announced a new breakthrough in biometric authentication based ... quantum mechanical properties to perform biometric authentication. These new ... semiconductor material created by Ram Group and its ... entertainment, transportation, supply chains and security. Ram Group ...
(Date:4/17/2017)... NXT-ID, Inc. (NASDAQ: NXTD ) ("NXT-ID" ... its 2016 Annual Report on Form 10-K on Thursday April 13, ... ... the Investor Relations section of the Company,s website at http://www.nxt-id.com ... http://www.sec.gov . 2016 Year Highlights: ...
(Date:4/11/2017)... Research and Markets has announced the addition of the ... ... grow at a CAGR of 30.37% during the period 2017-2021. ... prepared based on an in-depth market analysis with inputs from industry ... over the coming years. The report also includes a discussion of ...
Breaking Biology News(10 mins):
(Date:5/23/2017)... ... , ... Cambridge Semantics , the leading provider of Big Data management ... and Expo in Boston May 23-25 with a featured speaker and solution demos ... Lake is also a finalist for the Best of Show award. , James LaPointe, ...
(Date:5/22/2017)... Pittsburgh, PA (PRWEB) , ... May 22, 2017 ... ... Inc. announced today that it is exhibiting in booth B2 at the Association ... in Pittsburgh, May 22-25. , In addition to demonstrating its Cancer Diagnostic ...
(Date:5/19/2017)... ... May 19, 2017 , ... The University City ... with technologies ripe for commercialization, and who are affiliated with the 21 partner ... submit proposals. QED, now in its tenth round, is the first multi-institutional proof-of-concept ...
(Date:5/18/2017)... ... ... NDA Partners Chairman Carl Peck, MD , announced today that Richard ... of Pharmaceutical Development Business Unit of Cardinal Health, has joined the firm as an ... former Chief Operating Officer at Anaborex, Senior VP and General Manager of the San ...
Breaking Biology Technology: