Navigation Links
Research sees overlap in genes altered in schizophrenia, autism, intellectual disability
Date:4/29/2014

Dublin, Ireland and Cold Spring Harbor, NY In research published today in Molecular Psychiatry, a multinational team of scientists presents new evidence supporting the theory that in at least some cases of schizophrenia, autism and intellectual disability (ID), malfunctions in some of the same genes are contributing to pathology.

The team, the product of an ongoing collaboration between Professors W. Richard McCombie of Cold Spring Harbor Laboratory (CSHL) and Aiden Corvin of Trinity College, Dublin, studied a type of gene aberration called de novo mutation, in a sample of 42 "trio" families in which the child, but neither parent, was diagnosed with schizophrenia and/or psychosis and 15 trio families with a history of psychosis.

Schizophrenia is thought to be caused in many instances by gene mutations passed from parents to children, the effects of which may be enhanced by adverse environmental factors. In contrast, de novo mutations, or DNMs, are gene defects in offspring that neither parent possesses. They are the result of mechanical DNA copying errors, and occur infrequently in every human being during sperm and egg development, typically with no overall impact on human health.

However, on rare occasions, de novo mutations occur in a gene or genes indispensable for normal development and thus can have devastating consequences. This may be true of several of the genes affected by DNMs that are described in the newly published research. According to Shane McCarthy, Ph.D., a CSHL research investigator who is lead author of the new study, three genes found among the 42 affected children in the study AUTS2, CDH8 and MECP2 have been identified in prior genetic studies of people with autism. Two others, HUWE1 and TRAPPC9, have turned up in studies of people with intellectual disability.

Of these five "overlapping" genes, three (CHD8, MECP2 and HUWE1) have convergent function. They play roles in what scientists call the epigenetic regulation of transcription. That is, they are involved in the reading, writing and editing of chemical marks (called epigenetic marks) on DNA and proteins that help control when particular genes are switched on or off.

This makes the discovery particularly interesting, because "there's a growing awareness of the importance of epigenetic regulation during brain development, as well as in cognition in the mature brain," McCarthy points out. It is possible, the team speculates, that the genes found to affect the same biological function in multiple disorders are examples of those upon which normal brain development depends.

"Research made possible by the CSHL-Trinity College collaboration is leading us toward a much better understanding of how complex sets of genes are involved in complex illnesses," says McCombie, who is director of the Stanley Institute for Cognitive Genomics at CSHL. "Our work and that of other researchers, when taken together, is beginning to clarify our view of causation in these very complex, but also very common illnesses."

The Stanley Institute is dedicated to discovering the genetic causes of bipolar disorder, schizophrenia, depression and other cognitive disorders. The Institute's collaboration with Trinity College Dublin has the broader goal of integrating genetics, neurobiology and clinical application in order to impact current and future treatment of mental illness.

Professor McCombie notes that many genes can contribute to complex disorders such as schizophrenia. The challenge for scientists, he explains, is that "the number of differences between even healthy individuals is so great that finding which specific variant might contribute to a specific disorder such as schizophrenia from among those that don't cause problems, is difficult."

The team's newly published study narrows down the search to a portion of the human genome called the exome. This is the small fraction some 3%-4% of the total human genome sequence that contains protein-encoding genes. This strategy is especially useful in comparing children with their parents, because children have very few genetic variants de novo mutations, by definition -- that are not in one or the other parent. "Finding de novo variants in a child compared to their parents is technically relatively simple," says McCombie, and presents scientists with a particularly strong "signal" of potentially significant genetic variation in children who have an illness like schizophrenia that is not evident in either parent.

McCarthy adds, "In contrast to other methods of exploring the genome for genetic variation underlying schizophrenia risk, the granularity of exome sequencing enables us to identify specific genes that may be involved in the pathogenesis of the illness. This provides us with new biological insights into the disease that could be targeted with novel therapeutics to treat not just schizophrenia but a range of psychiatric disorders.


'/>"/>

Contact: Peter Tarr
tarr@cshl.edu
516-367-8455
Cold Spring Harbor Laboratory
Source:Eurekalert

Related biology news :

1. The International Society for Stem Cell Research 12th Annual Meeting, June 18-21, 2014
2. Sexual conflict affects females more than males, says new research on beetles
3. Researchers trace HIV evolution in North America
4. UNC researchers link aging to cellular interactions that occur across generations
5. New research focuses on streamwater chemistry, landscape variation
6. UV-radiation data to help ecological research
7. Researchers identify a mechanism linking bariatric surgery to health benefits
8. First brain images of African infants enable research into cognitive effects of nutrition
9. Grant to fund research on possible cell contaminants
10. Ginseng can treat and prevent influenza and RSV, researcher finds
11. Dana-Farber researchers uncover link between Down syndrome and leukemia
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/22/2016)... June 22, 2016 On Monday, the Department ... industry to share solutions for the Biometric Exit Program. ... and Border Protection (CBP), explains that CBP intends to ... the United States , in order ... defeat imposters. Logo - http://photos.prnewswire.com/prnh/20160622/382209LOGO ...
(Date:6/20/2016)... June 20, 2016 Securus Technologies, a ... solutions for public safety, investigation, corrections and monitoring ... involved, it has secured the final acceptance by ... for Managed Access Systems (MAS) installed. Furthermore, Securus ... to be installed by October, 2016. MAS distinguishes ...
(Date:6/15/2016)... York , June 15, 2016 ... new market report titled "Gesture Recognition Market by Application ... Forecast, 2016 - 2024". According to the report, the  ... 11.60 billion in 2015 and is estimated to ... USD 48.56 billion by 2024.  Increasing ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... NEW YORK , June, 23, 2016  The ... students to envision new ways to harness living systems ... of Modern Art (MoMA) in New York ... more than 130 participating students, showcased projects at MoMA,s ... included Paola Antonelli , MoMA,s senior curator of ...
(Date:6/23/2016)... ... June 23, 2016 , ... STACS DNA Inc., the sample tracking software company, ... Crime Laboratory, has joined STACS DNA as a Field Application Specialist. , “I ... President and COO of STACS DNA. “In further expanding our capacity as a scientific ...
(Date:6/23/2016)... NEWPORT BEACH, Calif. , June 23, 2016 /PRNewswire/ ... offering new biological discoveries to the medical community, has ... and co-founder Matthew Nunez . "We ... provide us with the capital we need to meet ... funding will essentially provide us the runway to complete ...
(Date:6/23/2016)... ... June 23, 2016 , ... ClinCapture, the only free validated ... will showcase its product’s latest features from June 26 to June 30, 2016 ... on Disrupting Clinical Trials in The Cloud during the conference. DIA (Drug ...
Breaking Biology Technology: