Navigation Links
Research pinpoints key gene for regenerating cells after heart attack
Date:12/20/2012

DALLAS Dec. 20, 2012 UT Southwestern Medical Center researchers have pinpointed a molecular mechanism needed to unleash the heart's ability to regenerate, a critical step toward developing eventual therapies for damage suffered following a heart attack.

Cardiologists and molecular biologists at UT Southwestern, teaming up to study in mice how heart tissue regenerates, found that microRNAs tiny strands that regulate gene expression contribute to the heart's ability to regenerate up to one week after birth. Soon thereafter the heart loses the ability to regenerate. By determining the fundamental mechanisms that control the heart's natural regenerative on-off switch, researchers have begun to better understand the No. 1 hurdle in cardiovascular research the inability of the heart to regenerate following injury.

"For the first time since we began studying how cells respond to a heart attack, we now believe it is possible to activate a program of endogenous regeneration," said Dr. Hesham Sadek, assistant professor of internal medicine in the division of cardiology, and the senior author of a study in the Proceedings of the National Academy of Sciences.

Each year, nearly 1 million people in the United States have a heart attack, while about 600,000 die of cardiovascular disease annually. Heart disease is the leading cause of death in both men and women, according to figures from the Centers for Disease Control and Prevention.

As researchers worldwide strive to find ways that help the human heart cope with myriad illnesses and injuries, scientists at UT Southwestern have focused their attention on the heart's regenerative capabilities. In 2011, a team led by Dr. Eric Olson, chairman of molecular biology, and Dr. Sadek demonstrated that within three weeks of removing 15 percent of the newborn mouse heart, the organ was able to completely grow back the lost tissue, and as a result looked and functioned normally.

In the latest investigation, UTSW researchers found that hearts of young rodents mounted a robust regenerative response following myocardial infarction, but this restorative activity only occurs during the first week of life. They then discovered that a microRNA called miR-15 disables the regenerative capacity after one week, but when miR-15 is blocked, the regenerative process can be sustained much longer.

"It is a fresh perspective on an age-old problem," said Dr. Olson, director of the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer, and the Nearburg Family Center for Basic and Clinical Research in Pediatric Oncology who is a co-corresponding author of the PNAS study. "We're encouraged by this initial finding because it provides us with a therapeutic opportunity to manipulate the heart's regenerative potential."

Further research will be needed to optimize the ways in which medical scientists, and eventually clinicians, may be able to control this regenerative process.

"This may well be the beginning of a new era in heart regeneration biology," Dr. Sadek said. "Our research provides hope that reawakening the regenerative capacity of adult mammalian hearts is within reach."


'/>"/>
Contact: Russell Rian
russell.rian@utsouthwestern.edu
214-648-3404
UT Southwestern Medical Center
Source:Eurekalert  

Related biology news :

1. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
2. Research reveals first evidence of hunting by prehistoric Ohioans
3. Diabetes Research Institute develops oxygen-generating biomaterial
4. APS issues new policy requiring identification of sex or gender in reporting scientific research
5. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
6. Study jointly led by UCSB researcher supports theory of extraterrestrial impact
7. U of Alberta researcher steps closer to understand autoimmune diseases
8. Research on flavanols and procyanidins provides new insights into how these phytonutrients may positively impact human health
9. A project to research biological and chemical aspects of microalgae to fuel approach
10. Scripps Research discoveries lead to newly approved drug for infant respiratory distress syndrome
11. Researchers attempt to solve problems of antibiotic resistance and bee deaths in one
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Research pinpoints key gene for regenerating cells after heart attack
(Date:6/23/2017)... and ITHACA, N.Y. , June 23, ... University, a leader in dairy research, today announced a ... to help reduce the chances that the global milk ... of this dairy project, Cornell University has become the ... the Food Supply Chain, a food safety initiative that ...
(Date:5/23/2017)... May 23, 2017  Hunova, the first robotic gym for the rehabilitation ... officially launched in Genoa, Italy . The first 30 ... and the USA . The technology was developed and ... by the IIT spin-off Movendo Technology thanks to a 10 million euro ... Release, please click: ...
(Date:5/16/2017)... May 16, 2017   Bridge Patient Portal ... and MD EMR Systems , an electronic ... for GE, have established a partnership to build ... and the GE Centricity™ products, including Centricity Practice ... These new integrations will allow healthcare ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... 11, 2017 , ... Proscia Inc ., a data ... titled, “Pathology is going digital. Is your lab ready?” with Dr. Nicolas Cacciabeve, ... and how Proscia improves lab economics and realizes an increase in diagnostic confidence.* ...
(Date:10/11/2017)... , ... October 11, 2017 , ... ... the implantation and pregnancy rates in frozen and fresh in vitro fertilization ... progesterone and maternal age to IVF success. , After comparing the results from ...
(Date:10/10/2017)... ... October 10, 2017 , ... For the second ... a US2020 STEM Mentoring Award. Representatives of the FirstHand program travelled to Washington, ... from US2020. , US2020’s mission is to change the trajectory of STEM education ...
(Date:10/10/2017)... ... October 10, 2017 , ... USDM Life Sciences ... the life sciences and healthcare industries, announces a presentation by Subbu Viswanathan and ... presentation, “Automating GxP Validation for Agile Cloud Platforms,” will present a revolutionary approach ...
Breaking Biology Technology: