Navigation Links
Research links damaged organs to change in biochemical wave patterns
Date:11/16/2010

By examining the distinct wave patterns formed from complex biochemical reactions within the human body, diseased organs may be more effectively identified, says Zhengdong Cheng, associate professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, who has developed a model that simulates how these wave patterns are generated.

His findings, which appear in the October issue of the journal "Physical Review E," detail Cheng's work with a system designed to model cells in a biochemical environment, similar to what occurs inside the human body.

His system utilizes two types of resin beads to represent cells. Those beads loaded with a catalyst are referred to as active and represent living cells. Those beads that are not loaded with a catalyst are referred to as inactive and represent diseased or dead cells.

In contrast to previous experiments that have only focused on the effects of active beads, Cheng's system is the first to examine the effects of inactive beads, particularly the effects of significant increases in the inactive bead population within a system.

Because the beads within the sample represent cells, the increase in inactive beads, Cheng explains, simulates a higher percentage of dead or diseased cells within an organ, such as the heart.

What Cheng found is that as the population of inactive beads increases, the resulting wave patterns transform from target-shaped to spiral-shaped. The inference, Cheng notes, is that as tissue of an organ becomes more diseased and greater numbers of cells die, the biochemical reactions involving that organ will produce spiral wavelets instead of target wavelets.

This corresponds, Cheng notes, to observations made with electrocardiograms that reveal a change from pane-wave to spiral wavelets accompanying the procession from normal sinus rhythm to ventricular fibrillation, a cause of cardiac arrest.

Recognizing these wave patterns and what they represent, Cheng says, may lead to a better and more timely understanding of the structure of a diseased organ. This knowledge, he adds, could help determine whether an organ is becoming diseased as well as the extent of damage to an organ once it is diseased.

"For example, fibrotic nonexcitable 'dead' tissue normally presents as a small percentage of normal heart tissue," Cheng says. "As a result of aging, after a heart attack, or in the case of cardiac myopathies, the percentage of fibrotic tissue increases dramatically, up to 30 or 40 percent.

"In a scenario such as this, given our findings, we would expect to see more spiral-shaped wavelets when examining an organ that has incurred structural damage. A further increase in spiral wavelets could potentially signal an even greater percentage of structural damage to the heart," Cheng says.


'/>"/>

Contact: Ryan A. Garcia
ryan.garcia99@tamu.edu
979-845-9237
Texas A&M University
Source:Eurekalert

Related biology news :

1. Researchers link cerebral malaria to epilepsy, behavior disorders
2. Infant estrogen levels tracked through diaper research
3. Budding research links climate change and earlier flowering plants
4. VaxTrac Receives $100,000 Grand Challenges Explorations Grant for Innovative Global Health Research
5. Researchers grow Rett syndrome in a Petri dish
6. New research changes understanding of C4 plant evolution
7. Tufts University chemist earns prestigious award for promising research on drug development
8. Clemson researcher will study plutonium underground for Energy Department
9. LSU oceanography researcher discovers toxic algae in open water
10. Medical research and magic come together
11. Scripps Research scientists identify new mechanism regulating daily biological rhythms
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/22/2016)... 2016 On Monday, the Department of Homeland ... share solutions for the Biometric Exit Program. The Request ... Protection (CBP), explains that CBP intends to add biometrics ... the United States , in order to deter ... Logo - http://photos.prnewswire.com/prnh/20160622/382209LOGO ...
(Date:6/9/2016)...  Perkotek an innovation leader in attendance control systems is proud to announce the ... employers to make sure the right employees are actually signing in, and to even ... ... ... ...
(Date:6/2/2016)... 2016   The Weather Company , an IBM Business ... industry-first capability in which consumers will be able to interact ... questions via voice or text and receive relevant information about ... Marketers have long sought an advertising solution that can ... personal, relevant and valuable; and can scale across millions of ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, the Industry Network ... Supplyframe Design Lab . Located in Pasadena, Calif., the Design Lab’s mission is ... projects are designed, built and brought to market. , The Design Lab is ...
(Date:6/23/2016)... , June 23, 2016  Blueprint Bio, a company ... to the medical community, has closed its Series A ... Nunez . "We have received a commitment ... capital we need to meet our current goals," stated ... us the runway to complete validation on the current ...
(Date:6/23/2016)... ... June 23, 2016 , ... Regulatory Compliance ... consulting, provides a free webinar on Performing Quality Investigations: Getting to ... 12pm CT at no charge. , Incomplete investigations are still a major concern ...
(Date:6/22/2016)... 2016 Cell Applications, Inc. and StemoniX ... produce up to one billion human induced pluripotent ... week. These high-quality, consistent stem cells enable researchers ... spend more time doing meaningful, relevant research. This ... manufacturing process that produces affordable, reliable HiPSC for ...
Breaking Biology Technology: