Navigation Links
Research explores role of hydrogen peroxide in cell health
Date:1/2/2008

WINSTON-SALEM, N.C. Hydrogen peroxide, the same mild acid that many people use to disinfectant their kitchens or treat cuts and abrasions, is also produced by the body to keep cells healthy. Now, researchers at Wake Forest University School of Medicine have solved how part of this complex process works.

Reporting in the January 3 issue of Nature, a team led by W. Todd Lowther, Ph.D., developed a three-dimensional snapshot of how two proteins produced by cells interact to regulate the levels of hydrogen peroxide.

For example, when the immune system is activated in response to bacteria, large amounts of hydrogen peroxide are produced by certain cells to fight the infection. Lowther and colleagues studied how a molecule known as peroxiredoxin (Prx) helps control levels of the agent. The role of Prx is important because if the levels of hydrogen peroxide become too high, the cells DNA and other proteins can be damaged. Scientists suspect that this and similar processes are what leads to cancer, diabetes and other disease.

Prx actually has a dual role in the process. Its usual job is removing excess hydrogen peroxide from the cells by converting it to water. But if levels get dangerously high and Prx needs help it becomes inactive in its converting job and instead becomes a signaler, telling the cell to produce or activate other proteins to help remove the excess.

It basically acts as a sensor and warns the cell that levels are too high and that the cell needs to respond, said Thomas J. Jnsson, Ph.D., lead author, and a post-doctoral fellow at Wake Forest. Once that threat is gone, Prx needs to go back to its normal state.

But how does Prx revert back to its usual job and become active again, so that it is available for a new wave of hydrogen peroxide? In 2003, scientists reported that a protein known as sulfiredoxin (Srx) was involved in the process. The goal of Lowthers team was to use X-ray crystallography to learn exactly what happens.

This technology gives us a three-dimensional snapshot of how the proteins interact, said Lowther. We wanted to know how Prx changes its structure to be repaired.

The scientists knew that the repair of Prx would involve it binding with Srx. They also knew that the structure of Prx would need to change because the portion of the molecule that is repaired by Srx is initially hidden when it is in the inactive form.

We found that the protein unfolded, flipped around and attached to the back side of Srx, known as an embrace, said Lowther. It basically put its arm around its buddy, which helps hold the repair protein in place.

Jnsson said the binding of Srx causes a chemical reaction that repairs Prx. The change in structure is dramatic and we found that it is critical for the repair to take place, he said.

The scientists said that understanding this protective mechanism that keeps cells healthy may one day help reveal how the process goes awry in disease. They will continue the research by studying how the structural change may affect how Prx interacts with other proteins.


'/>"/>

Contact: Shannon Koontz
shkoontz@wfubmc.edu
336-716-2415
Wake Forest University Baptist Medical Center
Source:Eurekalert

Related biology news :

1. Research shows skeleton to be endocrine organ
2. Newly created cancer stem cells could aid breast cancer research
3. Dominant cholesterol-metabolism ideas challenged by new research
4. Researchers identify proteins involved in new neurodegenerative syndrome
5. Texas researchers and educators head for Antarctica
6. MGH researchers describe new way to identify, evolve novel enzymes
7. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
8. University of Oregon researcher finds that on waters surface, nitric acid is not so tough
9. U of MN researchers discover noninvasive diagnostic tool for brain diseases
10. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
11. Story ideas from the Journal of Lipid Research
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/2/2016)... March 2, 2016 ... addition of the  "Global Biometrics Market in ... ,     (Logo: http://photos.prnewswire.com/prnh/20130307/600769) , , Global biometrics ... at a CAGR of around 27%   ... has announced the addition of the  "Global ...
(Date:3/1/2016)... March 1, 2016 ... addition of the  "Global Biometric Access ... to their offering. --> ... of the  "Global Biometric Access Control ... their offering. --> Research ...
(Date:3/1/2016)... and SAN FRANCISCO , March ... HYPR Corp. and BitGo, Inc. extends biometric authentication to ... and private keys. Bitcoin transactions ... billion per month in digital assets with over 10,000 ... for any startup. HYPR enables enterprises to keep encrypted ...
Breaking Biology News(10 mins):
(Date:4/27/2016)... ... April 27, 2016 , ... ... mobile devices with fingerprint recognition for secure access, voice recognition for hands-free communication, ... ways consumers are interacting with biometrics technology today. But if they asked ...
(Date:4/27/2016)... , ... April 27, 2016 , ... ... is pleased to announce the appointment of John Tilton as Chief Commercial Officer.  ... Director and one of the founding commercial leaders responsible for the commercialization of ...
(Date:4/27/2016)... ... April 27, 2016 , ... A compact PET ... Tomography) and MRI (Magnetic Resonance Imaging) in existing third-party MRI systems. PET and ... in small animal subjects. Simultaneous PET/MRI imaging offers a solution to many challenges ...
(Date:4/27/2016)... MedDay, a biotechnology company focused on the treatment of ... as Chairman of its Board of Directors. Catherine ... who contributed to the rapid development of the Company since ... her career in strategy consulting and investment banking in ...  She held C-Suite level roles in some of ...
Breaking Biology Technology: