Navigation Links
Research explores role of hydrogen peroxide in cell health
Date:1/2/2008

WINSTON-SALEM, N.C. Hydrogen peroxide, the same mild acid that many people use to disinfectant their kitchens or treat cuts and abrasions, is also produced by the body to keep cells healthy. Now, researchers at Wake Forest University School of Medicine have solved how part of this complex process works.

Reporting in the January 3 issue of Nature, a team led by W. Todd Lowther, Ph.D., developed a three-dimensional snapshot of how two proteins produced by cells interact to regulate the levels of hydrogen peroxide.

For example, when the immune system is activated in response to bacteria, large amounts of hydrogen peroxide are produced by certain cells to fight the infection. Lowther and colleagues studied how a molecule known as peroxiredoxin (Prx) helps control levels of the agent. The role of Prx is important because if the levels of hydrogen peroxide become too high, the cells DNA and other proteins can be damaged. Scientists suspect that this and similar processes are what leads to cancer, diabetes and other disease.

Prx actually has a dual role in the process. Its usual job is removing excess hydrogen peroxide from the cells by converting it to water. But if levels get dangerously high and Prx needs help it becomes inactive in its converting job and instead becomes a signaler, telling the cell to produce or activate other proteins to help remove the excess.

It basically acts as a sensor and warns the cell that levels are too high and that the cell needs to respond, said Thomas J. Jnsson, Ph.D., lead author, and a post-doctoral fellow at Wake Forest. Once that threat is gone, Prx needs to go back to its normal state.

But how does Prx revert back to its usual job and become active again, so that it is available for a new wave of hydrogen peroxide? In 2003, scientists reported that a protein known as sulfiredoxin (Srx) was involved in the process. The goal of Lowthers team was to use X-ray crystallography to learn exactly what happens.

This technology gives us a three-dimensional snapshot of how the proteins interact, said Lowther. We wanted to know how Prx changes its structure to be repaired.

The scientists knew that the repair of Prx would involve it binding with Srx. They also knew that the structure of Prx would need to change because the portion of the molecule that is repaired by Srx is initially hidden when it is in the inactive form.

We found that the protein unfolded, flipped around and attached to the back side of Srx, known as an embrace, said Lowther. It basically put its arm around its buddy, which helps hold the repair protein in place.

Jnsson said the binding of Srx causes a chemical reaction that repairs Prx. The change in structure is dramatic and we found that it is critical for the repair to take place, he said.

The scientists said that understanding this protective mechanism that keeps cells healthy may one day help reveal how the process goes awry in disease. They will continue the research by studying how the structural change may affect how Prx interacts with other proteins.


'/>"/>

Contact: Shannon Koontz
shkoontz@wfubmc.edu
336-716-2415
Wake Forest University Baptist Medical Center
Source:Eurekalert

Related biology news :

1. Research shows skeleton to be endocrine organ
2. Newly created cancer stem cells could aid breast cancer research
3. Dominant cholesterol-metabolism ideas challenged by new research
4. Researchers identify proteins involved in new neurodegenerative syndrome
5. Texas researchers and educators head for Antarctica
6. MGH researchers describe new way to identify, evolve novel enzymes
7. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
8. University of Oregon researcher finds that on waters surface, nitric acid is not so tough
9. U of MN researchers discover noninvasive diagnostic tool for brain diseases
10. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
11. Story ideas from the Journal of Lipid Research
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/4/2017)... YORK , April 4, 2017   EyeLock ... today announced that the United States Patent and Trademark ... patent broadly covers the linking of an iris image ... same transaction) and represents the company,s 45 th ... latest patent is very timely given the multi-modal biometric ...
(Date:3/30/2017)... -- The research team of The Hong Kong Polytechnic ... by adopting ground breaking 3D fingerprint minutiae recovery and matching technology, ... accuracy for use in identification, crime investigation, immigration control, security of ... ... A research team led by Dr ...
(Date:3/28/2017)... The report "Video Surveillance Market ... Storage Devices), Software (Video Analytics, VMS), and Service (VSaaS, ... to 2022", published by MarketsandMarkets, the market was valued ... to reach USD 75.64 Billion by 2022, at a ... year considered for the study is 2016 and the ...
Breaking Biology News(10 mins):
(Date:5/23/2017)... ... May 23, 2017 , ... ... source of human cardiovascular cells for research and the development of cardiac ... possible to generate large numbers of cardiomyocytes (hPSC-CMs). Due to varying differentiation ...
(Date:5/23/2017)... BELLINGHAM, Washington, USA (PRWEB) , ... May 22, ... ... SPIE Optics and Photonics 2017 in San Diego, California, this August ... virtual reality, solar fuels, and autonomous vehicles. , SPIE Optics and Photonics, the ...
(Date:5/23/2017)... , ... May 23, 2017 , ... ... as Vice President of Clinical Operations. She brings years of expertise in ... Therapeutics. From her professional foundation as a licensed occupational therapist, through a variety ...
(Date:5/23/2017)... ... May 23, 2017 , ... ... re-engineer their control technology again and again. METTLER TOLEDO has released two new ... The videos illustrate how integration of the ACT350 into Siemens and Allen Bradley ...
Breaking Biology Technology: