Navigation Links
Research details how developing neurons sense a chemical cue
Date:5/30/2014

Symmetry is an inherent part of development. As an embryo, an organism's brain and spinal cord, like the rest of its body, organize themselves into left and right halves as they grow. But a certain set of nerve cells do something unusual: they cross from one side to the other. New research in mice delves into the details of the molecular interactions that help guide these neurons toward this anatomical boundary.

In an embryo, a neuron's branches, or axons, have special structures on their tips that sense chemical cues telling them where to grow. The new findings, by researchers at Memorial Sloan Kettering Cancer Center and The Rockefeller University, reveal the structural details of how one such cue, Netrin-1, interacts with two sensing molecules on the axons, DCC and a previously less well characterized player known as neogenin, as a part of this process.

"Our work provides the first high-resolution view of the molecular complexes that form on the surface of a developing axon and tell it to move in one direction or another," says Dimitar Nikolov, a structural biologist at Memorial Sloan Kettering. "This detailed understanding of these assemblies helps us better understand neural wiring, and may one day be useful in the development of drugs to treat spinal cord or brain injuries."

In a developing nervous system, the signaling molecule, Netrin-1, identified by Rockefeller University Professor Marc Tessier-Lavigne and colleagues, can guide neurons by attracting or repulsing them. In the case of axons that cross from one side to the other, extended by so-called commissural neurons, Netrin-1 attracts them toward the middle.

With a technique that uses X-rays to visualize the structure of crystalized proteins, research scientist Kai Xu and colleagues in Nikolov's laboratory revealed that Netrin-1 has two separate binding sites on opposite ends, enabling it to simultaneously bind to different receptors. This may explain how Netrin-1, which is an important axon-guiding molecule, can affect in different ways neurons that express different combinations of receptors, Nikolov says.

For some time, scientists have known commissural neurons used the receptor molecule DCC to detect Netrin-1. Neogenin has a structure similar to DCC, and this research, described today in Science, confirms neogenin too acts as a sensing molecule for commissural neurons in mammals.

In experiments that complemented the structural work, conducted by Nicolas Renier and Zhuhao Wu in Tessier-Lavigne's lab, the researchers confirmed that, like DCC, neogenin senses Netrin-1 for the growing commissural neurons in mice.

These neurons are part of the system by which one side of the brain controls movement on the opposite side of the body. As a result, a mutation in the gene responsible for DCC interferes with this coordination, causing congenital mirror movement disorder. People with this disorder cannot move one side of the body in isolation; for example, a right-handed wave is mirrored by a similar gesture by the left hand.

The work also has implications for understanding why DCC, neogenin and other cell-surface receptors come in slightly different forms, called splice isoforms. The structural research revealed these isoforms bind differently to Netrin-1. However, it is not yet clear what this means for neuron wiring, Nikolov says.

"With this structural knowledge, and with the identification of an additional receptor involved in axon guidance in the spinal cord, we are gaining deeper insight into the mechanisms through which neurons make connections that produce a functioning nervous system, as well as the dysfunction that arises from miswiring of connections" says Tessier-Lavigne.


'/>"/>

Contact: Zach Veilleux
zveilleux@rockefeller.edu
212-327-8982
Rockefeller University
Source:Eurekalert  

Related biology news :

1. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
2. Research reveals first evidence of hunting by prehistoric Ohioans
3. Diabetes Research Institute develops oxygen-generating biomaterial
4. APS issues new policy requiring identification of sex or gender in reporting scientific research
5. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
6. Study jointly led by UCSB researcher supports theory of extraterrestrial impact
7. U of Alberta researcher steps closer to understand autoimmune diseases
8. Research on flavanols and procyanidins provides new insights into how these phytonutrients may positively impact human health
9. A project to research biological and chemical aspects of microalgae to fuel approach
10. Scripps Research discoveries lead to newly approved drug for infant respiratory distress syndrome
11. Researchers attempt to solve problems of antibiotic resistance and bee deaths in one
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Research details how developing neurons sense a chemical cue
(Date:12/20/2016)... N.C. and GENEVA, Dec, 20, 2016 /PRNewswire/ ... biometric data sensor technology, and STMicroelectronics ... the spectrum of electronics applications, announced today the ... development kit for biometric wearables that includes ST,s ... with Valencell,s Benchmark™ biometric sensor system. ...
(Date:12/16/2016)... The global wearable medical device market, in terms of ... USD 5.31 billion in 2016, at a CAGR of 18.0% during ... ... in medical devices, launch of a growing number of smartphone-based healthcare ... healthcare providers, and increasing focus on physical fitness. ...
(Date:12/15/2016)... , Dec. 15, 2016 ... driving experience, health wellness and wellbeing (HWW), ... one in three new passenger vehicles begin ... recognition, gesture recognition, heart beat monitoring, brain ... monitoring, facial monitoring, and pulse detection. These ...
Breaking Biology News(10 mins):
(Date:1/20/2017)... Philadelphia, PA (PRWEB) , ... January 20, 2017 , ... ... are transforming healthcare treatment options for patients. Vironika, a spin out from The Wistar ... are both taking lab space at 3624 Market Street. , Vironika is developing ...
(Date:1/20/2017)... , January 20, 2017 ... cancer is one of leading causes of death worldwide. ... Although the number of cancer related deaths increased gradually ... Rising in incidence rate of various cancers continues to ... a research report by Global Market Insights, Inc. cancer ...
(Date:1/19/2017)... India , Jan. 19, 2017  Market Research Future has ... Global Market for Liquid Biopsy is growing rapidly and expected to ... Market Highlights ... The Global Liquid Biopsy Market has been assessed as a ... growth figures and boom in the coming future. There has been ...
(Date:1/19/2017)... Research and Markets ... has announced the addition of the ... 2025" report to their offering. Report ... provides a detailed analysis on current and future market trends to identify ... market values as the base numbers Key market trends ...
Breaking Biology Technology: