Navigation Links
Research at Marshall University may lead to new ways to transport and manipulate molecules
Date:2/2/2010

HUNTINGTON, W.Va. A group of Marshall University researchers and their colleagues in Japan are conducting research that may lead to new ways to move or position single moleculesa necessary step if man someday hopes to build molecular machines or other devices capable of working at very small scales.

Dr. Eric Blough, a member of the research team and an associate professor in Marshall University's Department of Biological Sciences, said his group has shown how bionanomotors can be used some day to move and manipulate molecules at the nanoscale.

Their research will be published in the Feb. 5 issue of the research journal Small.

"Being able to manipulate a single molecule under controlled conditions is actually a pretty big challenge," said Blough. "It's not quite the same, but imagine trying to pick up a single sewing needle off the ground with a huge steam shovel, and doing it so that you pick up the needle and nothing else. Or, to put it another wayhow do you manipulate something that is very tiny with something that is very big? We decided to try and get around this problem by seeing if it was possible to use single molecules to move other single molecules."

"What we are trying to replicate in the lab is something that nature has been doing for millions of yearscells use bionanomotors all the time to move things around," he said.

Blough describes bionanomotors as naturally occurring tiny "machines" that convert chemical energy directly into mechanical work. A nanometer is about 1/100,000 the width of a human hair. A nanomotor is similarly sized and operates at the smallest of small scales.

"Our muscles are living proof of how bionanomotors can be harnessed to do useful work," he added.

In the lab, Blough and his colleagues used myosina protein found in muscle that is responsible for generating the force of muscle contractionas the motor, and actinanother protein isolated from muscleas the carrier.

Using a technique to make a pattern of active myosin molecules on a surface, they showed how cargothey used small beadscould be attached to actin filaments and moved from one part of the surface to another. To improve the system, they also used actin filaments they had bundled together.

"When we first started our work, we noticed that single actin filaments moved randomly," said Dr. Hideyo Takatsuki, lead author of the journal article and a postdoctoral fellow in Blough's laboratory. "To be able to transport something from point A to point B effectively you need to be able to have some control over the movement. The actin filaments are so flexible that it is difficult to control their motion but we found that if we bundled a bunch of them together, the movement of the filaments was almost straight."

In addition, the team also showed they could use light to control the movement of the filaments.

"For a transport system to work efficiently, you really need to have the ability to stop the carrier to pick up cargo, as well as the means to stop transport when you arrive at your destination," added Takatsuki.

To control the movement, they chose to exploit the chemical properties of another molecule called blebbistatin.

"Blebbistatin is an inhibitor of myosin and can be switched on and off by light," Blough said. "We found that we could stop and start movement by changing how the system was illuminated."

According to Blough, the long-range goal of the team's work is to develop a platform for the development of a wide range of nanoscale transport and sensing applications in the biomedical field.

"The promise of nanotechnology is immense," he said. "Someday it might be possible to perform diagnostic tests using incredibly small amounts of sample that can be run in a very short period of time and with a high degree of accuracy. The implications for improving human health are incredible."

Blough added that although their recent work is a step forward, there is still a long way to go.

"A number of further advancements are necessary before bionanomotors can be used for 'lab-on-a-chip' applications," he said. "It's a challenging problem, but that is one of the great things about scienceevery day is new and interesting."


'/>"/>

Contact: Ginny Painter
ginny.painter@marshall.edu
304-746-1964
Marshall University Research Corporation
Source:Eurekalert  

Related biology news :

1. Ability to navigate may be linked to genes, researcher says
2. Scripps Research scientists create new way to screen libraries of 10 million or more compounds
3. MSU researcher identifies cell mechanism leading to diabetic blindness
4. Boston University School of Medicine researcher awarded the 2010 Avanti Award in Lipids
5. Case Western Reserve University works with Johnson & Johnson Services Inc. on research grant
6. National Jewish Health researchers discover how virulent bacteria
7. Epigenetics could help researchers determine any risks associated with low-dose radiation
8. University of the Basque Country researchers decode transcriptome for gray mullet
9. Advances in cancer detection research by Virginia Tech engineer featured in British magazine
10. Research breakthrough could lead to new treatment for malaria
11. IRSF announces translational research award funding to test potential therapeutics for Rett syndrome
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Research at Marshall University may lead to new ways to transport and manipulate molecules
(Date:12/7/2016)... , Dec. 7, 2016   Avanade is ... Formula One teams in history, exploit biometric data in ... performance and maintain the competitive edge against their rivals ... Avanade has worked with Williams during ... of biometric data (heart rate, breathing rate, temperature and ...
(Date:12/5/2016)... , Dec. 5, 2016  The Office of ... published "Can CT Scans Enhance or Replace Medico ... potential of supporting or replacing forensic autopsies with ... scan. In response to recommendations made ... exploring using CT scans as a potential component ...
(Date:11/29/2016)... , Nov. 29, 2016 BioDirection, a privately ... products for the objective detection of concussion and other ... has successfully completed a meeting with the U.S. Food ... blood test Pre-Submission Package. During the meeting company representatives ... as a precursor to commencement of a planned pilot ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... , ... December 08, 2016 ... ... the commercial launch of flexible packaging for their exceptionally efficient human mesenchymal ... system extends RoosterBio’s portfolio of bioprocess media products engineered to radically streamline ...
(Date:12/8/2016)... , Dec. 8, 2016  HedgePath Pharmaceuticals, ... that discovers, develops and plans to commercialize innovative ... shares of common stock were approved for trading ... begin trading on the OTCQX, effective today, under ... for the OTCQX market, companies must meet high ...
(Date:12/7/2016)... ... December 07, 2016 , ... ACEA Biosciences, Inc. ... and expansion clinical trial for its lead drug candidate, AC0010, at the World ... trial was to determine the safety, antitumor activity, and recommended phase II dosage ...
(Date:12/7/2016)... , Dec. 7, 2016 /PRNewswire/ - Zenith Capital Corp. ("Zenith" or ... will be presented at the Company,s Annual and Special Meeting. ... Shareholders will take place on Thursday, December 15, 2016 at ... Hall (Room EC1040), 4825 Mount Royal Gate SW, ... A notice of meeting and management information circular, containing the ...
Breaking Biology Technology: