Navigation Links
Reorganizing brain could lead to new stroke, tinnitus treatments
Date:7/19/2012

UT Dallas researchers recently demonstrated how nerve stimulation paired with specific experiences, such as movements or sounds, can reorganize the brain. This technology could lead to new treatments for stroke, tinnitus, autism and other disorders.

In a related paper, The University of Texas at Dallas neuroscientists showed that they could alter the speed at which the brain works in laboratory animals by pairing stimulation of the vagus nerve with fast or slow sounds.

A team led by Dr. Robert Rennaker and Dr. Michael Kilgard looked at whether repeatedly pairing vagus nerve stimulation with a specific movement would change neural activity within the laboratory rats' primary motor cortex. To test the hypothesis, they paired the vagus nerve stimulation with movements of the forelimb in two groups of rats. The results were published in a recent issue of Cerebral Cortex.

After five days of stimulation and movement pairing, the researchers examined the brain activity in response to the stimulation. The rats who received the training along with the stimulation displayed large changes in the organization of the brain's movement control system. The animals receiving identical motor training without stimulation pairing did not exhibit any brain changes, or plasticity.

People who suffer strokes or brain trauma often undergo rehabilitation that includes repeated movement of the affected limb in an effort to regain motor skills. It is believed that repeated use of the affected limb causes reorganization of the brain essential to recovery. The recent study suggests that pairing vagus nerve stimulation with standard therapy may result in more rapid and extensive reorganization of the brain, offering the potential for speeding and improving recovery following stroke, said Rennaker, associate professor in The University of Texas at Dallas' School of Behavioral and Brain Sciences

"Our goal is to use the brain's natural neuromodulatory systems to enhance the effectiveness of standard therapies," Rennaker said. "Our studies in sensory and motor cortex suggest that the technique has the potential to enhance treatments for neurological conditions ranging from chronic pain to motor disorders. Future studies will investigate its effectiveness in treating cognitive impairments."

Since vagus nerve stimulation has an excellent safety record in human patients with epilepsy, the technique provides a new method to treat brain conditions in which the timing of brain responses is abnormal, including dyslexia and schizophrenia.

In another paper in the journal Experimental Neurology, Kilgard led a team that paired vagus nerve stimulation with audio tones of varying speeds to alter the rate of activity within the rats' brains. The team reported that this technique induced neural plasticity within the auditory cortex, which controls hearing.

"Our goal is to use the brain's natural neuromodulatory systems to enhance the effectiveness of standard therapies," Dr. Rennaker said.

The UT Dallas researchers are working with a device developed by MicroTransponder, a biotechnology firm affiliated with the University. MicroTransponder currently is testing a vagus nerve stimulation therapy on human patients in Europe in hopes of reducing or eliminating the symptoms of tinnitus, the debilitating disorder often described as "ringing in the ears."

"Understanding how brain networks self-organize themselves is vitally important to developing new ways to rehabilitate patients diagnosed with autism, dyslexia, stroke, schizophrenia and Alzheimer's disease," said Kilgard, a professor of neuroscience.

Treatment of neurological disease is currently limited to pharmacological, surgical or behavioral interventions. But this recent research indicates it may be possible to effectively manipulate the plasticity of the human brain for a variety of purposes. Patients then could benefit from brain activity intentionally directed toward rebuilding lost skills.

If subsequent studies confirm the UT Dallas findings, human patients may have access to more efficient therapies that are minimally invasive and avoid long-term use of drugs.


'/>"/>

Contact: Emily Martinez
emily.martinez@utdallas.edu
214-905-3049
University of Texas at Dallas
Source:Eurekalert

Related biology news :

1. LSUHSC research finds treating stress prevented new MS brain lesions
2. How a protein meal tells your brain you’re full
3. Diabetes drug makes brain cells grow
4. Road-mapping the Asian brain
5. Chronic inflammation in the brain leads the way to Alzheimers disease
6. Brain scans detect early signs of autism
7. Transgenic technique to eliminate a specific neural circuit of the brain in primates
8. Blood-brain barrier building blocks forged from human stem cells
9. Gene mutations cause massive brain asymmetry
10. Photograph of a living human brain is the overall winner of Wellcome Image Awards 2012
11. This is your brain on no self-control
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/15/2016)... and BADEN-BADEN, Germany , December 15, ... global financial services provider, today announced an agreement with NuData ... biometrics, to join forces. The partnership will enable clients to ... in compliance with local data protection regulation. ... In order to provide ...
(Date:12/15/2016)... ... has announced the addition of the "Global Military Biometrics Market 2016-2020" ... global military biometrics market to grow at a CAGR of 7.5% during ... on an in-depth market analysis with inputs from industry experts. The report ... The report also includes a discussion of the key vendors operating in ...
(Date:12/15/2016)... HILLS, Mich. , Dec. 15, 2016  There ... unlocking car doors or starting the engine. Continental will ... in Las Vegas . Through the ... (Passive Start and Entry) and biometric elements, the international ... field of vehicle personalization and authentication. "The ...
Breaking Biology News(10 mins):
(Date:1/18/2017)... 2017   Parent Project Muscular Dystrophy (PPMD) , ... Duchenne muscular dystrophy (Duchenne) , today announced a $600,000 ... of Technology (NJIT) and Talem Technologies (Talem) as part ... to assist people living with Duchenne. PPMD is ... an embedded computer, software, a force sensor and a ...
(Date:1/18/2017)... ... January 18, 2017 , ... Total Orthopedics and Sports Medicine ... Solofuse-P™. The operation took place on Wednesday, January 11, 2017 at Long Island ... anterior cervical discectomy and fusion on a 42 year old female who was ...
(Date:1/18/2017)... ... January 18, 2017 , ... Announced in December ... Institutes (MII). U.S. Secretary of Commerce Penny Pritzker has announced the award of ... of Defense has announced the award of a new Advanced Regenerative Manufacturing Institute ...
(Date:1/18/2017)... ... 18, 2017 , ... Researchers from a new study are stating that if levels ... prostate cancer treatment, this indicates there is still remaining prostate cancer cells that are more ... PSA test has always been an indicator of whether a man’s prostate cancer is ...
Breaking Biology Technology: