Navigation Links
Regulatory molecule for tumor formation or suppression identified by Singapore, US researchers
Date:3/17/2009

One of the small regulatory molecules, named microRNA-125b, is a novel regulator of p53, an important protein that safeguards cells against cancers, Singapore and U.S. scientists report in the March 17, 2009 issue of the journal Genes & Development.

The scientists found that during embryonic development, this microRNA keeps the level of p53 low to avoid excessive cell death.

But, if the DNA is damaged, the microRNA level is reduced to allow an increase in p53, which eliminates damaged cells and thus prevents tumor formation.

The research was conducted with zebrafish.

"Interestingly, this microRNA is elevated in many types of human cancers, suggesting that it may contribute to the formation of tumours by suppressing the p53 protein," said Bing Lim, M.D., Ph.D., lead author and senior group leader at the Genome Institute of Singapore (GIS), a research institute under the Agency for Science, Technology and Research (A*STAR).

"Hence, our findings have important implications in the diagnosis and treatment of cancers," he added. "The significance of this finding, of course, once again emphasizes the relevance and importance of research linking microRNAs to many subspecialties of human medicine, including cancer and regenerative medicine."

Harvard Medical School's Judy Lieberman, M.D., Ph.D., said, "This important study provides an elegant and beautifully worked out example of the role of microRNAs in master-minding how a cell responds to environmental cues and developmental signals.

"The implication of this study is that these small molecules might be mimicked or antagonized as drugs to treat serious diseases for which no effective treatment exists at present," added Dr. Lieberman, senior investigator at the Immune Disease Institute, and Professor of Pediatrics and Director of the Division of AIDS at Harvard. She is not a co-author of the paper.

Professor of Cell Biology at the Harvard Medical School, Frank McKeon, Ph.D., commented, "This is an elegant use of zebrafish models to uncover how a single microRNA can regulate the p53 tumor suppressor gene. The strength of this regulation suggests that we will hear more about the microRNA-125b in specific human cancers in the near future." Dr. McKeon also is not a co-author of the paper

MicroRNA-125b is a member of the microRNA family of small regulatory molecules that have evolved in nature to regulate tightly the quantity of protein produced by each messenger RNA (mRNA), which generates the group of proteins that determine the unique characteristics of every cell type.

MicroRNAs play complex roles in the simultaneous fine-tuning of many genes in each cell a role not yet well understood by biologists. It is a complicated, delicate balance that can be profoundly disturbed if just a few microRNAs go awry.

Recent research reveals that microRNAs are abundant in the cell, and that they play important roles in development and in many diseases.


'/>"/>

Contact: Cathy Yarbrough
sciencematter@yahoo.com
858-243-1814
Agency for Science, Technology and Research (A*STAR), Singapore
Source:Eurekalert

Related biology news :

1. Type 1 diabetes triggered by lazy regulatory T-cells: McGill researchers
2. Use of nanomaterials in food packaging poses regulatory challenges
3. New regulatory mechanism discovered for cell identify and behavior in forming organs
4. Caltech researchers help unlock the secrets of gene regulatory networks
5. New data suggest jumping genes play a significant role in gene regulatory networks
6. Food counterfeiting, contamination outpace international regulatory systems
7. Memory molecule stores memories in neocortex
8. Clemson scientists shed light on molecules in living cells
9. Model for the assembly of advanced, single-molecule-based electronic components developed at Pitt
10. Botched production of insulin molecule may lead to diabetes
11. New molecules discovered that block cancer cells from modifying cell DNA
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/1/2016)... NEW YORK , June 1, 2016 ... Biometric Technology in Election Administration and Criminal Identification to ... According to a recently released TechSci Research report, " ... Sector, By Region, Competition Forecast and Opportunities, 2011 - ... $ 24.8 billion by 2021, on account of growing ...
(Date:5/16/2016)... May 16, 2016   EyeLock LLC , a ... the opening of an IoT Center of Excellence in ... expand the development of embedded iris biometric applications. ... of convenience and security with unmatched biometric accuracy, making ... aside from DNA. EyeLock,s platform uses video technology to ...
(Date:5/3/2016)... 2016  Neurotechnology, a provider of high-precision biometric ... Biometric Identification System (ABIS) , a complete system ... ABIS can process multiple complex biometric transactions with ... fingerprint, face or iris biometrics. It leverages the ... MegaMatcher Accelerator , which have been used ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT ... Ontario biotechnology company, Propellon Therapeutics ... development and commercialization of a portfolio of first-in-class ... Epigenetic targets such as WDR5 represent an exciting ... significantly in precision medicine for cancer patients. Substantial ...
(Date:6/23/2016)...  The Prostate Cancer Foundation (PCF) is pleased to announce 24 ... for prostate cancer. Members of the Class of 2016 were selected from a ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... STACS DNA ... Technical Leader at the Arkansas State Crime Laboratory, has joined STACS DNA as a ... STACS DNA team,” said Jocelyn Tremblay, President and COO of STACS DNA. “In further ...
(Date:6/23/2016)... -- Andrew D Zelenetz , ... Published recently in Oncology & ... Andrew D Zelenetz , discusses the fact ... placing an increasing burden on healthcare systems worldwide, ... the patents on many biologics expiring, interest in ...
Breaking Biology Technology: