Navigation Links
Regenerative powers in the animal kingdom explored in special issue of the Biological Bulletin
Date:8/18/2011

MBL, WOODS HOLE, MASS.Why can one animal re-grow tissues and recover function after injury, while another animal (such as a human being) cannot? This is a central question of regenerative biology, a field that has captured the imagination of scientists and the public since the 18th century, and one that is finally gaining traction and momentum through modern methods of analysis.

Regeneration of the eye lens in frogs; of neural tissue in the snail; of the spinal cord in the sea lamprey; of the entire viscera in the sea cucumberthese and other capacities of animal regeneration are detailed in a "virtual symposium" in this month's issue of The Biological Bulletin.

"[The] use of animal models to understand the mechanism of regeneration is both fruitful and of potentially enormous significance to the future practice of medicine," write the issue's co-editors, Joel Smith of the MBL's Eugene Bell Center for Regenerative Biology and Medicine; and James L. Olds of the Department of Molecular Neuroscience at George Mason University.

"The challenge is to describe the mechanisms of (animal) regeneration at the molecular level, delivering detailed insights into the many components that are cross-regulated," assert Smith and colleagues in a research article that advocates a "systems" approach of constructing maps of gene activity during the animal's regenerative phase.

The power of this approach, they write, is that studying regeneration in a carefully selected model (spinal cord regeneration in the sea lamprey, for example) "can reveal gene regulatory networks that may be conserved in the human central nervous system and may therefore serve as therapeutic targets for new pharmacological and biological compounds after brain or spinal cord injury."

Other authors take different approaches to illuminating regenerative biology. Robert Lauzon of Union College and colleagues, in research conducted partly at the MBL, consider the roles of stem cells and allorecognition in sea squirt regeneration. Nozomi Yoshinari and Atsushi Kawakami of Tokyo Institute of Technology review the process of fin regeneration in zebrafish and medeka and highlight the "compartments" or subpopulations of cells that are involved. MBL scientists Mark Messerli and David Graham review the roles of extracellular electrical fields (EFs) in controlling development, wound healing, and regeneration. Three of the issue's papers apply tools and insights from neuroscience to investigate neural regeneration in the snail (Ryota Matsuo and Esturo Ito of Tokushima Bunri University; M.J. Zoran of Texas A&M and colleagues; and in the sea squirt (H.N. Skld of University of Gothenburg and colleagues). Finally, the issue reprints a landmark article on the concept of polarity in regenerative processes by Thomas Hunt Morgan, an early leader in the field, which was first published in The Biological Bulletin in 1909.

In co-editing the issue, Smith and Olds write, "we were struck anew how many unanswered questions of basic science are central to regeneration," such as the "age-old question [of] whether, and to what degree, regenerative processes recapitulate the developmental program." But the field of regeneration today is "broad and vibrant," as this issue of The Biological Bulletin shows, with many efforts furnishing answers and clues.


'/>"/>

Contact: Carol Schachinger
cschachi@mbl.edu
508-289-7149
Marine Biological Laboratory
Source:Eurekalert  

Related biology news :

1. Regenerative medicine workshops to debut at TERMIS North America Annual Conference
2. Military medicine symposium to explore regenerative medicine, behavioral health
3. Top professor will report new way to discover drugs that aid regenerative medicine
4. Pitt gets $12 million DoD contract for regenerative medicine treatment trials
5. Animal models that help translate regenerative therapies from bench to bedside
6. Pitt researchers net $5 million from NIH to explore better ways to grow cells for regenerative medicine
7. New method developed by UC San Diego bioengineers gives regenerative medicine a boost
8. From stem cells to new organs: Stanford and NYU scientists cross threshold in regenerative medicine
9. UTSA wins $500,000 to develop biosensor and regenerative medicine Ph.D. program
10. Cytori reports benefit of adipose-derived regenerative cells in spinal disc model
11. Embryonic heart exhibits impressive regenerative capacity
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Regenerative powers in the animal kingdom explored in special issue of the Biological Bulletin
(Date:3/22/2017)... 2017 Optimove , provider of ... such as 1-800-Flowers and AdoreMe, today announced two ... Replenishment. Using Optimove,s machine learning algorithms, these features ... replenishment recommendations to their customers based not just ... customer intent drawn from a complex web of ...
(Date:3/16/2017)... CeBIT 2017 - Against identity fraud with DERMALOG solutions "Made in Germany ... ... in one project, multi-biometric solutions provide a crucial contribution against identity fraud. (PRNewsFoto/Dermalog Identification Systems) ... Used combined in one project, multi-biometric solutions provide a crucial ... ...
(Date:3/7/2017)... , March 7, 2017 Brandwatch , the ... by The Prince,s Trust to uncover insights to support ... The Trust. The UK,s leading youth charity will be ... campaign results and get a better understanding of the topics and ... ...
Breaking Biology News(10 mins):
(Date:3/28/2017)... ... ... Franz Inc ., the leading supplier of Semantic Graph Database technology, ... by Bloor Research in its recent Graph Database Market Update report. ... Gruff, it was rated as the easiest product to use.” – Bloor Research , ...
(Date:3/28/2017)... WASHINGTON , March 28, 2017 /PRNewswire/ ... launch single-cell sequencing during the American Association for Cancer ... Convention Center in Washington, D.C. , ... differential gene expression of thousands of cells at the ... Experts on-hand at AACR to discuss ...
(Date:3/28/2017)... HOLLISTON, Mass. , March 28, 2017 ... "Company"), a biotechnology company developing bioengineered organ implants to ... bronchus and trachea, today announced that Jim McGorry, ... 3D Printing and BioEngineering panel at the ... 2017 at 2:30 PM ET in Cambrige, Massachussetts. The ...
(Date:3/28/2017)... -RepliCel Life Sciences Inc. (OTCQB: REPCF) (TSXV: RP) (FRA:P6P2) ("RepliCel" ... clinical data from its phase 1/2 tendon repair study investigating ... (RCT-01) as a treatment for Achilles tendinosis. ... The clinical trial ... 6 months and showed no serious adverse events related to ...
Breaking Biology Technology: