Navigation Links
Red blood cells have a tiny but effective protector -- microRNA
Date:7/31/2010

Pediatric researchers have discovered a new biological pathway in which small segments of RNA, called microRNA, help protect red blood cells from injury caused by chemicals called free radicals. The microRNA seems to have only a modest role when red blood cells experience normal conditions, but steps into action when the cells are threatened by oxidant stress.

Led by hematologist Mitchell Weiss, M.D., Ph.D., of The Children's Hospital of Philadelphia, the current study describes how a particular microRNA fine-tunes gene activity by acting on an unexpected signaling pathway.

The study appears in the August 1 issue of the journal Genes & Development, simultaneously with a similar study of microRNAs and red blood cells by a University of Texas team led by Eric Olson, Ph.D. The two studies reinforce each other, said Weiss.

MicroRNAs are single-stranded molecules of ribonucleic acid (RNA) averaging only 22 nucleotides long. Scientists estimate that 500 to 1000 microRNAs exist in the human genome. First characterized in the early 1990s, they received their current name in 2001. Over the past decade, scientists have increasingly recognized that microRNAs play a crucial role in regulating genes, most typically by attaching to a piece of messenger RNA and blocking it from being translated into a protein, but many details remain to be discovered.

"Although microRNAs affect the formation and function of most or all tissues, for most microRNAs, we don't know their precise mechanisms of action," said Weiss. "In this case we already knew this microRNA, called miR-451, regulates red blood cells in zebrafish and mice, and because it is highly conserved in evolution, we presume it operates in humans as well. But its functional roles were poorly understood."

By investigating how microRNAs influence red blood cell development, Weiss and colleagues aimed to understand how such development goes wrong in hemolytic anemia, in which red blood cells are destroyed in large numbers, or in disorders of abnormal blood cell production. The current study used knockout micebioengineered animals in which the miR-451 gene was removed and could not function.

They found that preventing the activity of miR-451 produced only modest effectsmild anemia in the micebut when the team subjected mice to oxidant stress by dosing them with a drug that produces free radicals, the mice had profound anemia. The oxygen radicals attacked hemoglobin, the iron-carrying molecule in red blood cells.

"This is a common theme in microRNAsfrequently, they don't play a central role during tissue formation or normal conditions, but they have a strong protective effect when an organism is stressed," said Weiss. "Over evolutionary time, red blood cells have evolved ways to protect themselves; one of those ways is the action of microRNA."

Weiss's team found that miR-451, acting through intermediate steps on a signaling pathway, affects a key protein, FoxO3. As a transcription factor, FoxO3 regulates hundreds of genes; in this case, FoxO3 stimulates specific genes that protect red blood cells from oxidant stress. The knockout mice in this study, having lost miR-451's function, showed impaired FoxO3 activity, and less ability to protect their red blood cells.

The regulatory pathway seen here, Weiss added, may have medical implications beyond blood cell development. "This finding does not have immediate clinical application for patients with blood diseases, but it sheds light on how microRNAs fine tune physiological functions in different contexts," said Weiss. FoxO3 regulates anti-oxidant functions in heart cells and also acts as a tumor suppressor, so miR-451 may have an important role in heart protection and in fighting cancers. "Further studies may broaden our knowledge of how this microRNA may defend the body against disease," he added.


'/>"/>

Contact: John Ascenzi
Ascenzi@email.chop.edu
267-426-6055
Children's Hospital of Philadelphia
Source:Eurekalert

Related biology news :

1. Rare and common genetic variations responsible for high triglyceride levels in blood
2. Noninvasive MR imaging of blood vessel growth in tumors using nanosized contrast agents
3. UT MD Anderson study ties abnormal cells in blood to lung cancer
4. Adaptation in mole blood aids tunnelling
5. Toward making extended blood group typing more widely available
6. Pitt researchers find new proteins that regulate blood pressure, flow
7. For lambs, a pasture a week keeps blood suckers away
8. Waters unexpected role in blood pressure control
9. Reprogrammed human blood cells show promise for disease research
10. Cheap, simple, noninvasive blood test may replace invasive diagnostic techniques in early pregnancy
11. Dark chocolate lowers blood pressure
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:8/15/2017)... Aug. 15 2017   ivWatch LLC , a medical device ... therapy, today announced receipt of its ISO 13485 Certification, the global ... International Organization for Standardization (ISO®). ... ivWatch Model 400 Continuous Monitoring device for the early detection of ... "This is an important milestone ...
(Date:6/30/2017)... , June 30, 2017 Today, American ... and supplier of face and eye tracking software, ... Product provider program. "Artificial intelligence ... way to monitor a driver,s attentiveness levels while ... being able to detect fatigue and prevent potential ...
(Date:6/14/2017)... June 15, 2017  IBM (NYSE: IBM ) is introducing ... event dedicated to developing collaboration between startups and global businesses, ... 15-17. During the event, nine startups will showcase the solutions ... various industries. France ... market, with a 30 percent increase in the number of ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... 2017 , ... ComplianceOnline’s Medical Device Summit is back for its 4th year. ... San Francisco, CA. The Summit brings together current and former FDA office bearers, regulators, ... government officials from around the world to address key issues in device compliance, quality ...
(Date:10/11/2017)... ... October 11, 2017 , ... A new study published ... frozen and fresh in vitro fertilization (IVF) transfer cycles. The multi-center ... success. , After comparing the results from the fresh and frozen transfer cohorts, ...
(Date:10/10/2017)... ... ... Dr. Bob Harman, founder and CEO of VetStem Biopharma, Inc. ... event entitled “Stem Cells and Their Regenerative Powers,” was held on August 31st, ... was joined by two human doctors: Peter B. Hanson, M.D., Chief of Orthopedic Surgery, ...
(Date:10/9/2017)... , Oct. 9, 2017  BioTech Holdings ... mechanism by which its ProCell stem cell therapy ... limb ischemia.  The Company, demonstrated that treatment with ... of limbs saved as compared to standard bone ... molecule HGF resulted in reduction of therapeutic effect.  ...
Breaking Biology Technology: