Navigation Links
Recruiting engineered cells to work for warfighters
Date:4/8/2013

ARLINGTON, Va.The Office of Naval Research (ONR) today launched a collaborative initiative with university researchers focused on synthetic, or engineered, cellspart of a larger effort to use the smallest units of life to help Sailors and Marines execute their missions.

ONR currently has multiple ongoing projects in the field of synthetic biology, which offers new tools and methods for creating new organisms with specific functions, such as threat monitoring.

Even the simplest cells can have complex functions, such as being able to move in a particular direction or glow in the dark. The idea is to make these capabilities useful to humans by directing their natural functions and adding non-natural functions to a cell's repertoire.

In one instance, ONR is examining synthetic cell circuitsgenetic programs designed by scientists either to make a cell perform a certain task or change the way a cell would normally do the task. For example, plants have been engineered to turn white when they detect trinitrotoluene (TNT) as a visual cue to their handlers.

"We're developing better ways to program cells to detect things we're interested inlike explosivesand then communicate that they've found that chemical to a device like a robot," said Dr. Linda Chrisey, ONR program officer for naval biosciences and bio-centric technology. "For example, you could grow these special cells on a silicon chip that's part of a robot. When the cells detect something and respond, they would communicate this information to the 'mother ship'the autonomous robot system."

One of ONR's biggest successes to date was a TNT-detecting plant. This "plant sentinel" transitioned to the Defense Threat Reduction Agency and Department of Homeland Security in 2010. A small company was founded to modify this plant for other applications, such as chemical warfare detection and crop security.

"The grand plan is to try and take advantage of the natural capabilities of microbes to collect chemical and physical signal information of different types and process this information," Chrisey said. "We already make a lot of medicines and industrial products using cells and engineered cells. Synthetic biology is going to smarten that process up, make it less susceptible to failure and save money by allowing us greater control of the engineered cells."

Another initiative is looking at microbes that use carbon dioxide and electrical current for their metabolism and programming them to make liquid fuels. "Eventually, in a remote location, with just a vial of these organisms and materials that most people consider to be waste products, Sailors or Marines could potentially make organic compoundssuch as fuel, medicine or polymerson demand, even under austere conditions," Chrisey said.

In the long term, synthetic circuits offer possibilities for enabling new methods for manufacturing. These new processes can be used: to make certain products, such as biofuels, pharmaceuticals and specialty chemicals; as medical devices and therapies for infection control, regenerating tissues and disease treatment; as environmental sensors and pollution treatments; and for micro-robotic systems.

The Multidisciplinary University Initiative (MURI) launched today, "Next-generation genetic devices: Model-guided Discovery and Optimization of Cell-Based Sensors," is aimed at applying tools from synthetic biology to construct high-performance and robust genetic sensors that respond to non-natural signals, such as non-visible wavelengths of light (ultraviolet and infrared) and magnetic fields. This program is expected to contribute to the development of "smart" hybrid biological-robotic systems that will detect threats in the environment. The universities involved are the Massachusetts Institute of Technology, Penn State, Rice University, Rutgers University, California Institute of Technology and University of Minnesota.

MURI efforts involve teams of researchers investigating high-priority topics and opportunities that involve more than one technical area. This multidisciplinary approach often stimulates innovations, accelerates research progress and expedites transition of results into naval applications.


'/>"/>

Contact: Peter Vietti
onrcsc@onr.navy.mil
703-588-2167
Office of Naval Research
Source:Eurekalert

Related biology news :

1. Market Analysis: Biomaterials and Engineered Protein
2. Painting with catalysts: Nano-engineered materials for detoxifying water by use of sunlight
3. Engineered bacteria make fuel from sunlight
4. Production of 5-aminovaleric and glutaric acid by metabolically engineered microorganism
5. Engineered immune cells produce complete response in child with an aggressive pediatric leukemia
6. Leukemia patients remain in remission more than 2 years after engineered T cell therapy
7. Bioengineered marine algae expands environments where biofuels can be produced
8. Soft Robotics: A groundbreaking new journal on engineered soft devices that Interact with Living Systems
9. Engineered bacteria can make the ultimate sacrifice
10. Ecologist: Genetically engineered algae for biofuel pose potential risks that should be studied
11. Success of engineered tissue depends on where its grown
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/3/2016)... June 3, 2016 ... Nepal hat ein ... hochsicherer geprägter Kennzeichen, einschließlich Personalisierung, Registrierung und ... der Produktion und Implementierung von Identitätsmanagementlösungen. Zahlreiche ... im Januar teilgenommen, aber Decatur wurde als ...
(Date:6/1/2016)... Favorable Government Initiatives Coupled With ... Identification to Boost Global Biometrics System Market Through 2021  ... report, " Global Biometrics Market By Type, By ... 2011 - 2021", the global biometrics market is projected ... of growing security concerns across various end use sectors ...
(Date:5/12/2016)... DALLAS , May 12, 2016 ... has just published the overview results from the Q1 ... of the recent wave was consumers, receptivity to a ... wearables data with a health insurance company. ... choose to share," says Michael LaColla , CEO ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... 2016 , ... Cancer experts from Austria, Hungary, Switzerland, and ... new and helpful biomarker for malignant pleural mesothelioma. Surviving Mesothelioma has just published ... , Biomarkers are components in the blood, tissue or body fluids that ...
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... announced the funding of a Sponsored Research Agreement ... circulating tumor cells (CTCs) from cancer patients.  The ... in CTC levels correlate with clinical outcomes in ... These data will then be employed to support ...
(Date:6/24/2016)... ... 24, 2016 , ... While the majority of commercial spectrophotometers and fluorometers use ... 6000i models are higher end machines that use the more unconventional z-dimension of 20mm. ... from the bottom of the cuvette holder. , FireflySci has developed several Agilent ...
(Date:6/23/2016)... CAMBRIDGE, Mass. , June 23, 2016 /PRNewswire/ ... the development of novel compounds designed to target ... compound, napabucasin, has been granted Orphan Drug Designation ... in the treatment of gastric cancer, including gastroesophageal ... cancer stemness inhibitor designed to inhibit cancer stemness ...
Breaking Biology Technology: