Navigation Links
Ray of hope for human Usher syndrome patients
Date:12/4/2012

After years of basic research, scientists at Johannes Gutenberg University Mainz (JGU) are increasingly able to understand the mechanisms underlying the human Usher syndrome and are coming ever closer to finding a successful treatment approach. The scientists in the Usher research group of Professor Dr. Uwe Wolfrum are evaluating two different strategies. These involve either the repair of mutated genes or the deactivation of the genetic defects using agents. Based on results obtained to date, both options seem promising. Usher syndrome is a congenital disorder that causes the loss of both hearing and vision.

Usher syndrome is the most common form of congenital deaf-blindness in humans, occurring in 1 in 6,000 of the population. Those suffering from the disease are drastically handicapped in everyday life as they lose the use of the two most important sensory organs, i.e., their ears and eyes. In the most severe cases, patients are born deaf and begin to suffer from vision impairment in the form of retinal degeneration in puberty that result in complete blindness. While it is possible to compensate for the loss of hearing with hearing aids and cochlear implants, no therapy was previously available for the ophthalmic component of the disorder. Scientists at Mainz University are currently undertaking preclinical translational research in an attempt to find an answer to this problem.

The investigations undertaken by the team of Dr. Kerstin Nagel-Wolfrum focused on the nonsense mutation in the USH1C gene that had been identified as the cause of the most severe form of Usher syndrome in a German family. The nonsense mutation is a stop signal generated by the DNA that causes premature termination of synthesis of the protein harmonin, which is encoded by USH1C.

The research team published its latest findings with regard to gene repair as a possible treatment of Usher syndrome in the June edition of the opthalmologic journal Investigative Opthalmology & Visual Science. During her doctoral research, Dr. Nora Overlack managed to repair the USH1C gene with the help of molecular scissors' generated using the so-called zinc-finger nuclease technique. Using zinc-finger nuclease, the scientists first initiated a double sequence DNA cleavage at the site of the disease-generating mutation. This surgical incision on the molecular level was then repaired by means of the cell's own repair mechanism in the form of homologous recombination and the introduction of a non-mutated USH1C DNA sequence. The mutated gene sequence was thus replaced with the non-mutated sequence. The efficacy of the zinc-finger nuclease technique with regard to genetic repair was demonstrated in a cell culture model at both the genome and the protein level.

The research team has also recently published the latest results of its pharmaco-genetic approach to the treatment of Usher syndrome patients with nonsense mutations in the journal EMBO Molecular Medicine. In this case, Dr. Tobias Goldman and the other team members compared various molecules that can induce read-through of the stop signal and thus provide for normal protein synthesis. In addition, they evaluated the retinal biocompatibility of the various molecules. The research focused on PTC124 (Ataluren) and 'designer' aminoglycosides. These aminoglycosides are derived from clinically tested antibiotics and have been modified by Professor Dr. Timor Bassov of the Technicon in Haifa/Israel to improve their capacity to read-through the mutation and reduce their toxicity. The Mainz researchers had already been successful in using one of the first generation designer aminoglycosides to read-through the nonsense mutations in the USH1C gene.

They were now able to show that PTC124 (Ataluren) and a second generation aminoglycoside (NB54) in particular would induce read-through of the stop signal in the mutated USH1C gene. This meant that protein synthesis continued, so that the active gene product was synthesized in the cell and organ cultures. Both active substances, PTC124 and NB54, generally enhanced read-through efficacy and exhibited improved tolerability in mouse and human retinal cultures in comparison with clinically employed antibiotics. The team also successfully documented read-through of the mutation in vivo a mouse model.

"Our gene-based treatment strategies, involving gene repair as well as read-through therapy, represent valuable and promising alternatives to viral gene addition and may actually be the only treatment option for the large and isoform-rich USH genes. We hope that these alternatives will make a significant contribution to the therapy of both Usher syndrome patients as well as others with severe genetic retinal pathologies and other genetic disorders," explains Dr. Kerstin Nagel-Wolfrum.

In addition to continuing its preclinical studies into the use of the active substances, the Mainz Usher research team plans to make its new Usher syndrome therapy available to patients as soon as possible.


'/>"/>
Contact: Dr. Kerstin Nagel-Wolfrum
nagelwol@uni-mainz.de
49-613-139-20131
Johannes Gutenberg Universitaet Mainz
Source:Eurekalert

Related biology news :

1. Alzheimers disease in mice alleviated promising therapeutic approach for humans
2. Study reveals the proteins expressed by human cytomegalovirus
3. Short DNA strands in the genome may be key to understanding human cognition and diseases
4. Fruit fly studies guide investigators to misregulated mechanism in human cancers
5. Researchers sequence swine genome, discover associations that may advance animal and human health
6. Scientists improve dating of early human settlement
7. Mini-pig tale provides massive amount of genomic data for human health
8. Verinata Health Announces New Findings At The American Society Of Human Genetics
9. Tactile croc jaws more sensitive than human fingertips
10. Obese dogs at risk of health condition experienced by humans
11. National Heart Centre Singapore develops worlds first human heart cell model
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/14/2016)... , April 14, 2016 ... Malware Detection, today announced the appointment of Eyal ... new role. Goldwerger,s leadership appointment comes at ... heels of the deployment of its platform at several ... biometric technology, which discerns unique cognitive and physiological factors, ...
(Date:3/31/2016)... 31, 2016   ... the "Company") LegacyXChange is excited to release ... soon to be launched online site for trading 100% ... ) will also provide potential shareholders a sense of ... to an industry that is notorious for fraud. The ...
(Date:3/29/2016)... , March 29, 2016 ... "Company") LegacyXChange "LEGX" and SelectaDNA/CSI Protect are pleased to ... ink used in a variety of writing instruments, ensuring ... of originally created collectibles from athletes on LegacyXChange will ... analysis of the DNA. Bill Bollander ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... ... In a new case report published today in STEM CELLS Translational Medicine, doctors ... being treated for breast cancer benefitted from an injection of stem cells derived from ... frequent side effect of cancer treatment. , Lymphedema refers to the swelling ...
(Date:6/23/2016)... June 23, 2016 On Wednesday, June ... 4,833.32, down 0.22%; the Dow Jones Industrial Average edged 0.27% ... at 2,085.45, down 0.17%. Stock-Callers.com has initiated coverage on the ... Nektar Therapeutics (NASDAQ: NKTR ), Aralez Pharmaceuticals Inc. ... BIND ). Learn more about these stocks by ...
(Date:6/23/2016)... 2016  Amgen (NASDAQ: AMGN ) today ... life sciences incubator to accelerate the development of ... space at QB3@953 was created to help high-potential life ... many early stage organizations - access to laboratory infrastructure. ... launched two "Amgen Golden Ticket" awards, providing each winner ...
(Date:6/22/2016)... , June 22, 2016  According to Kalorama ... generation sequencing (NGS) market include significant efforts in ... sequencers.  More accessible and affordable sequencers, say the ... demand for consumables including sample prep materials.  The ... for Sample Preparation for Next Generation Sequencing (NGS) ...
Breaking Biology Technology: