Navigation Links
Ray of hope for human Usher syndrome patients
Date:12/4/2012

After years of basic research, scientists at Johannes Gutenberg University Mainz (JGU) are increasingly able to understand the mechanisms underlying the human Usher syndrome and are coming ever closer to finding a successful treatment approach. The scientists in the Usher research group of Professor Dr. Uwe Wolfrum are evaluating two different strategies. These involve either the repair of mutated genes or the deactivation of the genetic defects using agents. Based on results obtained to date, both options seem promising. Usher syndrome is a congenital disorder that causes the loss of both hearing and vision.

Usher syndrome is the most common form of congenital deaf-blindness in humans, occurring in 1 in 6,000 of the population. Those suffering from the disease are drastically handicapped in everyday life as they lose the use of the two most important sensory organs, i.e., their ears and eyes. In the most severe cases, patients are born deaf and begin to suffer from vision impairment in the form of retinal degeneration in puberty that result in complete blindness. While it is possible to compensate for the loss of hearing with hearing aids and cochlear implants, no therapy was previously available for the ophthalmic component of the disorder. Scientists at Mainz University are currently undertaking preclinical translational research in an attempt to find an answer to this problem.

The investigations undertaken by the team of Dr. Kerstin Nagel-Wolfrum focused on the nonsense mutation in the USH1C gene that had been identified as the cause of the most severe form of Usher syndrome in a German family. The nonsense mutation is a stop signal generated by the DNA that causes premature termination of synthesis of the protein harmonin, which is encoded by USH1C.

The research team published its latest findings with regard to gene repair as a possible treatment of Usher syndrome in the June edition of the opthalmologic journal Investigative Opthalmology & Visual Science. During her doctoral research, Dr. Nora Overlack managed to repair the USH1C gene with the help of molecular scissors' generated using the so-called zinc-finger nuclease technique. Using zinc-finger nuclease, the scientists first initiated a double sequence DNA cleavage at the site of the disease-generating mutation. This surgical incision on the molecular level was then repaired by means of the cell's own repair mechanism in the form of homologous recombination and the introduction of a non-mutated USH1C DNA sequence. The mutated gene sequence was thus replaced with the non-mutated sequence. The efficacy of the zinc-finger nuclease technique with regard to genetic repair was demonstrated in a cell culture model at both the genome and the protein level.

The research team has also recently published the latest results of its pharmaco-genetic approach to the treatment of Usher syndrome patients with nonsense mutations in the journal EMBO Molecular Medicine. In this case, Dr. Tobias Goldman and the other team members compared various molecules that can induce read-through of the stop signal and thus provide for normal protein synthesis. In addition, they evaluated the retinal biocompatibility of the various molecules. The research focused on PTC124 (Ataluren) and 'designer' aminoglycosides. These aminoglycosides are derived from clinically tested antibiotics and have been modified by Professor Dr. Timor Bassov of the Technicon in Haifa/Israel to improve their capacity to read-through the mutation and reduce their toxicity. The Mainz researchers had already been successful in using one of the first generation designer aminoglycosides to read-through the nonsense mutations in the USH1C gene.

They were now able to show that PTC124 (Ataluren) and a second generation aminoglycoside (NB54) in particular would induce read-through of the stop signal in the mutated USH1C gene. This meant that protein synthesis continued, so that the active gene product was synthesized in the cell and organ cultures. Both active substances, PTC124 and NB54, generally enhanced read-through efficacy and exhibited improved tolerability in mouse and human retinal cultures in comparison with clinically employed antibiotics. The team also successfully documented read-through of the mutation in vivo a mouse model.

"Our gene-based treatment strategies, involving gene repair as well as read-through therapy, represent valuable and promising alternatives to viral gene addition and may actually be the only treatment option for the large and isoform-rich USH genes. We hope that these alternatives will make a significant contribution to the therapy of both Usher syndrome patients as well as others with severe genetic retinal pathologies and other genetic disorders," explains Dr. Kerstin Nagel-Wolfrum.

In addition to continuing its preclinical studies into the use of the active substances, the Mainz Usher research team plans to make its new Usher syndrome therapy available to patients as soon as possible.


'/>"/>
Contact: Dr. Kerstin Nagel-Wolfrum
nagelwol@uni-mainz.de
49-613-139-20131
Johannes Gutenberg Universitaet Mainz
Source:Eurekalert

Related biology news :

1. Alzheimers disease in mice alleviated promising therapeutic approach for humans
2. Study reveals the proteins expressed by human cytomegalovirus
3. Short DNA strands in the genome may be key to understanding human cognition and diseases
4. Fruit fly studies guide investigators to misregulated mechanism in human cancers
5. Researchers sequence swine genome, discover associations that may advance animal and human health
6. Scientists improve dating of early human settlement
7. Mini-pig tale provides massive amount of genomic data for human health
8. Verinata Health Announces New Findings At The American Society Of Human Genetics
9. Tactile croc jaws more sensitive than human fingertips
10. Obese dogs at risk of health condition experienced by humans
11. National Heart Centre Singapore develops worlds first human heart cell model
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/29/2017)... the health IT company that operates the largest health ... today announced a Series B investment from BlueCross BlueShield ... investment and acquisition accelerates higi,s strategy to create the ... activities through the collection and workflow integration of ambient ... secures data today on behalf of over 36 million ...
(Date:3/24/2017)... -- The Controller General of Immigration from Maldives Mr. ... have received the prestigious international IAIR Award for the most innovative high ... ... Maldives Immigration Controller ... (small picture on the right) have received the IAIR award for the ...
(Date:3/23/2017)... Mar. 23, 2017 Research and Markets has ... Analysis & Trends - Industry Forecast to 2025" report to ... ... a CAGR of around 8.8% over the next decade to reach ... analyzes the market estimates and forecasts for all the given segments ...
Breaking Biology News(10 mins):
(Date:4/25/2017)... , ... April 25, 2017 , ... ... Physical Medicine & Rehabilitation, P.A. , proudly announced today that acclaimed physiatrist Matthew ... his duties on May 15, 2017. , Dr. Terzella completed his residency in ...
(Date:4/25/2017)... SEATTLE, WA (PRWEB) , ... April 25, 2017 , ... ... technology division of Quorum, will be featured in multiple sessions at this week’s ... range from emerging trends to best practices in clinical research. , "We are excited ...
(Date:4/24/2017)... YORK , April 24, 2017  Dante Labs announced ... at only EUR 850 (ca. $900). While American individuals have ... the first time Europeans can access WGS below EUR 1,000. ... are crucial to leveraging genetic information to make informed decisions ... ...
(Date:4/21/2017)... ... April 21, 2017 , ... Having worked on the ... Formaspace is pleased to introduce it to top lab design architects from around the ... Turk and VP of Industrial Design and Engineering Greg Casey will be at the ...
Breaking Biology Technology: