Navigation Links
Rattlesnake-type poisons used by superbug bacteria to beat our defenses
Date:9/7/2008

Colonies of hospital superbugs can make poisons similar to those found in rattlesnake venom to attack our bodies' natural defences, scientists heard today (Monday 8 September 2008) at the Society for General Microbiology's Autumn meeting being held this week at Trinity College, Dublin.

The toxins are manufactured by communities of the hospital superbug Pseudomonas aeruginosa called biofilms, which are up to a thousand times more resistant to antibiotics than free-floating single bacterial cells.

"This is the first time that anyone has successfully proved that the way the bacteria grow either as a biofilm, or living as individuals affects the type of proteins they can secrete, and therefore how dangerous they can potentially be to our health," says Dr Martin Welch from the University of Cambridge, UK.

"Acute diseases caused by bacteria can advance at an astonishing rate and tests have associated these types of disease with free-floating bacteria. Such free-floating bugs often secrete tissue-damaging poisons and enzymes to break down our cells, contributing to the way the disease develops, so it is natural to blame them. By contrast, chronic or long-term infections seem to be associated with biofilms, which were thought to be much less aggressive," says Dr Welch.

The research team's findings are very important to the NHS, which spends millions of pounds every year fighting chronic long-term bacterial infections which are incredibly difficult to treat.

"For example, these chronic infections by bacteria are now the major cause of death and serious disability in cystic fibrosis patients which is the most common lethal inherited disease in the UK and affects about 8,000 people," says Dr Welch.

In cystic fibrosis the gene defect means that people are very susceptible to a particular group of opportunistic bacteria including Pseudomonas aeruginosa, which is one of the three major hospital superbugs. Aggressive antibiotic treatment can usually control the infection in cystic fibrosis sufferers but eventually the strain becomes completely resistant to antibiotics, leading to respiratory failure and death, often while still in their thirties.

"We think that the bacteria in a cystic fibrosis sufferer's lungs are partly living in communities called biofilms, and although medical scientists have investigated their strongly antibiotic-resistant properties, very little research has been done to investigate any active contribution the biofilms might have in causing diseases in the first place," says Dr Welch.

A widely-held view is that biofilms serve as reservoirs of bacteria that do relatively little harm; they just sit there. The main danger is thought to be from 'blooms' of free living cells which occasionally break away from the biofilm and cause periods of poor lung function in the cystic fibrosis patients. "In this scenario, it follows that bacteria in a biofilm will produce fewer disease-causing chemicals than free-living cells of the same type of bacteria, which is a prediction that we can test," says Dr Welch. "We found that, in contrast to expectation, biofilms do indeed produce harmful chemicals. However, the type of tissue-degrading enzymes and toxins made by the biofilm bacteria differ from those produced by free-floating bugs, which may help them to survive attacks by our immune systems."

In addition, the scientists discovered that the biofilm bacteria can produce a protein which their analysis suggests is similar to one of the active ingredients in rattlesnake venom. In the case of rattlesnake venom the protein causes the host cells to commit suicide and die, which is one reason why rattlesnake bites are so dangerous. The research team is currently studying the protein to see if it functions in the same way.

In addition the scientists have found evidence that the trigger for the bacteria to start producing these extra virulence factors is turned on very shortly after the biofilm begins to form. Once the scientists have fully identified the virulence factors created by the biofilm bacteria, the proteins and enzymes may be targeted to develop drugs for a variety of uses, including the treatment of hospital superbugs, cancer and cystic fibrosis.


'/>"/>

Contact: Lucy Goodchild
l.goodchild@sgm.ac.uk
44-078-248-83010
Society for General Microbiology
Source:Eurekalert

Related biology news :

1. Developing kryptonite for Superbug
2. Decoy makes sitting duck of superbugs
3. Green tea helps beat superbugs
4. New antibiotic beats superbugs at their own game
5. Shuttle brings space-grown strep bacteria back for study
6. The worlds oldest bacteria
7. Bacteria from sponges make new pharmaceuticals
8. Boston University biomedical engineers find chink in bacterias armor
9. University of Leicester scientists discover technique to help friendly bacteria
10. Spaceflight shown to alter ability of bacteria to cause disease
11. A tiny pinch from a z-ring helps bacteria cells divide
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/21/2017)... February 21, 2017 Der weltweite ... wachsen. Nach einem Gespräch mit mehr als 50 Vertretern aus ... zu überwinden gilt, um diese Prognose zu realisieren. ... ... Mobilisierung der finanziellen Mittel für die Biobank, die Implementierung ...
(Date:2/10/2017)... , Feb 10, 2017 ... new report "Personalized Medicine - Scientific and Commercial Aspects" ... ... personalized medicine. Diagnosis is integrated with therapy for selection of ... on early detection and prevention of disease in modern medicine. ...
(Date:2/8/2017)... 7, 2017 The biometrics market has ... confluence of organizations, desires to better authenticate or ... (password and challenge questions), biometrics is quickly working ... The market is driven by use cases, though ... and enterprise uses cases, with consumer-facing use cases ...
Breaking Biology News(10 mins):
(Date:2/21/2017)... - SQI Diagnostics Inc. ("SQI" or the "Company") (TSX-V: SQD; OTCQX: ... months ended December 31, 2016. SQI is ... company that develops and commercializes proprietary technologies and products for ... ... milestones achieved in fiscal 2016," said Andrew Morris , ...
(Date:2/21/2017)... ... 21, 2017 , ... The medical potential of stem cells is both extensive ... medicine, due to their differentiating characteristics. Stem cells are unique as the have the ... induced to become tissue or organic-specific cells with special functions. , Stem cell ...
(Date:2/21/2017)... Feb. 21, 2017  Lexus, a returning partner of the ... official and exclusive automobile partner of the men,s and women,s events ... The 2017 Amgen Tour of California ... some of the best professional cycling teams in the world racing ... The four-day Amgen Breakaway from Heart Disease TM ...
(Date:2/20/2017)... ... February 20, 2017 , ... ... that it has been approved for full, active membership in the Canadian Direct ... was founded by Chief Executive Officer Jeff Olson in 2011. Today ...
Breaking Biology Technology: