Navigation Links
Rare earths in bacteria
Date:10/30/2013

This news release is available in German.

Rare earths are among the most precious raw materials of all. These metals are used in mobile telephones, display screens and computers. And they are apparently indispensable for some organisms as well. A team of researchers, including scientists from the Max Planck Institute for Medical Research in Heidelberg, has discovered a bacterium which needs rare earths to grow - in a hot spring. Methylacidiphilum fumariolicum requires lanthanum, cerium, praseodymium or neodymium as co-factor for the enzyme methanol dehydrogenase, with which the microbes produce their energy. The use of rare earths is possibly more widespread among bacteria than previously thought.

In reality, the 17 metals that belong to the group of rare earths are not rare at all. The Earth's crust contains larger quantities of rare earths than of gold or platinum, for example. The problem is that the elements have a relatively even distribution, so that mining is economical in only a few places.

In living organisms, the rare earths really are rare, on the other hand. As they dissolve hardly at all in water, most organisms cannot use them for their metabolism. This makes their discovery in a mudpot of volcanic origin in the Solfatara crater in Italy all the more surprising. Microbiologists from the Radboud University in Nijmegen, the Netherlands, have found a microbe which cannot live without some of the rare earths.

Methylacidiphilum fumariolicum belongs to a group of bacteria which have chosen an extremely inhospitable habitat: They thrive best at a pH value of between 2 and 5 and temperatures of between 50 and 60 degrees - conditions which are lethal for other organisms. Methylacidiphilum even tolerates pH values below 1, which corresponds to concentrated sulphuric acid.

The microbes produce their energy from methane. They have a special enzyme, methanol dehydrogenase, which processes the methanol produced in the decomposition of methane with the aid of metal co-factors. Most of these bacteria use calcium for this process.

In the course of their investigations, the Nijmegen researchers noticed that Methylacidiphilum thrives only with original water from the mudpot. None of the trace elements which the researchers added to the Petri dishes encouraged the bacteria to grow. An analysis of the water showed that it contained concentrations of rare earths that were one hundred to one thousand times higher than normal.

Thomas Barends and Andreas Dietl from the Max Planck Institute for Medical Research investigated the three-dimensional structure of methanol dehydrogenase. They thereby noticed that Methylacidiphilum fumariolicum had inserted not calcium, but an atom of a different metal in its methanol dehydrogenase.

"Suddenly, everything fit together," explains Thomas Barends. "We were able to show that this mysterious atom must be a rare earth. This is the first time ever that rare earths have been found to have such a biological function." Methylacidiphilum uses the rare earths lanthanum, cerium, praseodymium and neodymium in its methanol dehydrogenase instead of calcium. The bacterium needs them to produce energy from methane.

The rare earths have a slightly larger ion radius than calcium, but can still replace it as a co-factor of enzymes. "Individual amino acids have been exchanged in the amino acid chain of the methanol dehydrogenase of the bacterium. This creates more room for the metals," says Barends. In addition, Methylacidiphilum digests a larger quantity of rare earths than it needs to survive. It is therefore possible that it stores the metals in the cell.

Genome and proteome analyses suggest that the Methylacidiphilum version of methanol dehydrogenase is widespread among bacteria from coastal waters. Scientists have also discovered methane-exploiting bacteria equipped with this on the leaf surface of plants. Plants can enrich rare earths and thus safeguard the supply for the bacteria. "These bacteria are possibly present anywhere there is a sufficient supply of sand, as sand is an almost inexhaustible source of rare earths," says Barends.


'/>"/>

Contact: Dr. Thomas Barends
thomas.barends@mpimf-heidelberg.mpg.de
49-622-148-6508
Max-Planck-Gesellschaft
Source:Eurekalert  

Related biology news :

1. Research unearths new dinosaur species
2. Geosphere features top geoscience technology, including LiDAR, EarthScope, CHIRP, ALSM, and IODP
3. Chapman University unearths data in animal habitat selection that counters current convention
4. Leading evolutionary scientist to discuss how genome of bacteria has evolved
5. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
6. Team discovers how bacteria resist a Trojan horse antibiotic
7. From scourge to saint: E. coli bacteria becomes a factory - to make cheaper, faster pharmaceuticals
8. Bacterial shock to recapture essential phosphate
9. Disarming disease-causing bacteria
10. Study shows unified process of evolution in bacteria and sexual eukaryotes
11. Invisible helpers: How probiotic bacteria protect against inflammatory bowel diseases
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Rare earths in bacteria
(Date:3/30/2017)... ANGELES , March 30, 2017  On April ... Hack the Genome hackathon at Microsoft,s ... exciting two-day competition will focus on developing health and ... Hack the Genome is the ... been tremendous. The world,s largest companies in the genomics, ...
(Date:3/28/2017)... India , March 28, 2017 ... IP, Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), Software ... Vertical, and Region - Global Forecast to 2022", published ... Billion in 2016 and is projected to reach USD ... between 2017 and 2022. The base year considered for ...
(Date:3/23/2017)... The report "Gesture Recognition and Touchless Sensing Market by ... Global Forecast to 2022", published by MarketsandMarkets, the market is expected to be ... 2017 and 2022. Continue Reading ... ... ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... , ... October 12, 2017 , ... ... Vilnius, Lithuania, announced today that they have entered into a multiyear collaboration to ... provide CRISPR researchers with additional tools for gene editing across all applications. , ...
(Date:10/12/2017)... ... 12, 2017 , ... AMRI, a global contract research, development ... patient outcomes and quality of life, will now be offering its impurity solutions ... new regulatory requirements for all new drug products, including the finalization of ICH ...
(Date:10/11/2017)... ... October 11, 2017 , ... The CRISPR-Cas9 system ... experiments and avoiding the use of exogenous expression plasmids. The simplicity of programming ... systematic gain-of-function studies. , This complement to loss-of-function studies, such as with ...
(Date:10/11/2017)... , ... October 11, 2017 , ... ... announced today it will be hosting a Webinar titled, “Pathology is going digital. ... Associates , on digital pathology adoption best practices and how Proscia improves lab ...
Breaking Biology Technology: