Navigation Links
Random walks on DNA
Date:4/19/2013

Scientists have revealed how a bacterial enzyme has evolved an energy-efficient method to move long distances along DNA. The findings, published in Science, present further insight into the coupling of chemical and mechanical energy by a class of enzymes called helicases, a widely-distributed group of proteins, which in human cells are implicated in some cancers.

The new helicase mechanism discovered in this study, led by researchers from the University of Bristol and the Technische Universitt Dresden in Germany, may help resolve some of the unexplained roles for helicases in human biology, and in turn help researchers to develop future technological or medical applications.

A commonly held view of DNA helicases is that they move along DNA and "unzip" the double helix to produce single strands of DNA for repair or copying. This process requires mechanical work, so enzyme movement must be coupled to consumption of the chemical fuel ATP. These enzymes are thus often considered as molecular motors.

In the new work, Ralf Seidel and his team at the Technische Universitt Dresden developed a microscope that can stretch single DNA molecules whilst at the same time observe the movement of single fluorescently-labelled helicases. In parallel, the Bristol researchers in the DNA-Protein Interactions Unit used millisecond-resolution fluorescence spectroscopy to reveal dynamic changes in protein conformation and the kinetics of ATP consumption.

The team studied a helicase found in bacteria that moves along viral (bacteriophage) DNA. The work demonstrated that, surprisingly, the enzyme only consumed ATP at the start of the reaction in order to change conformation. Thereafter long-range movement along the DNA was driven by thermal motion; in other words by collisions with the surrounding water molecules. This produces a characteristic one-dimensional "random walk" (see picture), where the protein is just as likely to move backwards as forwards.

Mark Szczelkun, Professor of Biochemistry from the University's School of Biochemistry and one of the senior authors of the study, said: "This enzyme uses the energy from ATP to force a change in protein conformation rather than to unwind DNA. The movement on DNA thereafter doesn't require an energy input from ATP. Although movement is random, it occurs very rapidly and the enzyme can cover long distances on DNA faster than many ATP-driven motors. This can be thought of as a more energy-efficient way to move along DNA and we suggest that this mechanism may be used in other genetic processes, such as DNA repair."


'/>"/>

Contact: Caroline Clancy
caroline.clancy@bristol.ac.uk
44-011-792-88086
University of Bristol
Source:Eurekalert

Related biology news :

1. Random Forests Tree Ensembles: Salford Systems Exclusive Insight
2. Far from random, evolution follows a predictable genetic pattern, Princeton researchers find
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/20/2017)... ALLENTOWN, Pa. , March 20, 2017 ... PD 2.0 personal spirometer and Wellness Management System (WMS), ... Founded in 2010, PMD Healthcare is a ... Company with a mission dedicated to creating innovative solutions ... of life. With that intent focus, PMD developed the ...
(Date:3/13/2017)... of security: Biometric Face Matching software  Continue Reading ... ... match face pictures against each other or against large databases. The recognition of ... ... for biometric Face Matching on the market. The speed is at 100 million ...
(Date:3/9/2017)... and MOUNTAIN VIEW, Calif. ... "Eating Well Made Simple," and 23andMe , the ... guide better food choices.  Zipongo can now provide customers ... food preferences, health goals and biometrics, but also genetic ... food choices. Zipongo,s personalized food decision support ...
Breaking Biology News(10 mins):
(Date:3/27/2017)... , March 27, 2017 Infectex Ltd., a Russian portfolio ... 2b-3 clinical study of SQ109 added to the standard drug therapy regimen in patients ... scientists at Sequella, Inc. ( USA ) and the US National Institutes ... ... Maxwell Biotech Venture Fund Logo ...
(Date:3/27/2017)... Winston-Salem, NC (PRWEB) , ... March 27, 2017 , ... ... Clinical Trial Collaborations (CTC) conference presented by The Conference Forum in Boston ... the way they collaborate to drive improved clinical trial outcomes and bring them closer ...
(Date:3/27/2017)... 27, 2017 Neurotrope, Inc. (OTCQB: NTRP),  ... neurodegenerative diseases, including Alzheimer,s disease, today announced that ... list the Company,s common stock on the NASDAQ ... Stock Market, a unit of the NASDAQ OMX ... the Opening Bell at the NASDAQ MarketSite in ...
(Date:3/24/2017)... Sinovac Biotech Ltd. ("Sinovac" or the "Company") (NASDAQ: SVA), a leading ... announced that its board of directors has amended its shareholder rights ... 27, 2017 to March 27, 2018. The amendment was not in response ... ... Biotech Ltd. is a China -based biopharmaceutical company ...
Breaking Biology Technology: