Navigation Links
Radically simple technique developed to grow conducting polymer thin films
Date:11/2/2010

Oil and water don't mix, but add in some nanofibers and all bets are off.

A team of UCLA chemists and engineers has developed a new method for coating large surfaces with nanofiber thin films that are both transparent and electrically conductive. Their method involves the vigorous agitation of water, dense oil and polymer nanofibers. After this solution is sufficiently agitated it spreads over virtually any surface, creating a film.

"The beauty of this method lies in its simplicity and versatility," said California NanoSystems Institute (CNSI) researcher Richard B. Kaner, a professor of chemistry and biochemistry and a professor of materials science and engineering at the UCLA Henry Samueli School of Engineering and Applied Science. "The materials used are inexpensive and recyclable, the process works on virtually any substrate, it produces a uniform thin film which grows in seconds and the entire thing can be done at room temperature."

Conducting polymers combine the flexibility and toughness of plastics with electrical properties. They have been proposed for applications ranging from printed electronic circuits to supercapacitors but have failed to gain widespread use because of difficulties processing them into films.

"Conducting polymers have enormous potential in electronics, and because this technique works with so many substrates, it can be used in a broad spectrum of applications, including organic solar cells, light-emitting diodes, smart glass and sensors," said Yang Yang, a professor of materials science and engineering at the Samueli School of Engineering and Applied Science and faculty director of the Nano Renewable Energy Center at the CNSI.

One of the potential applications is smart, or switchable, glass that can change between states when an electric current is applied for example, switching between see-through and opaque states to let light in or block it. The UCLA research group is applying the technique to other nanomaterials in addition to polymer nanofibers in the hopes of expanding the number of available applications.

The team's solution-based technique, published in the peer-reviewed journal Proceedings of National Academy of Sciences, was discovered serendipitously when a transparent film of polymer spread up the walls of a container while nanofibers in water were being purified with chloroform.

"What drew me in immediately was the eerie phenomenon of what appeared to be self-propelled fluid flow," said Julio M. D'Arcy, lead author on the PNAS paper and a senior graduate student in the Kaner's UCLA lab.

"Now I can tell people that I make films in L.A.," he joked.

When water and oil are mixed, a blend of droplets is formed, creating a wateroil interface that serves as an entry point for trapping polymer nanofibers at liquidliquid interfaces. As droplets unite, a change in the concentration of blended solids at the wateroil interface leads to a difference in surface tension. Spreading up a glass wall occurs as result of an attempt to reduce the surface-tension difference. Directional fluid flow leads to a continuously conductive thin film comprised of a single monolayer of polymer nanofibers. The uniformity of the film surface is due to the particles being drawn out of the wateroil interface, sandwiched between two fluids of opposing surface tensions.

Development of the technology is occurring in collaboration with Fibron Technologies Inc., with support from the National Science Foundation through a Small Business Technology Transfer grant. Fibron is a small company that has licensed the technology from UCLA. It was founded by Kaner, who serves as chief scientific adviser, and two of his former Ph.D. students Christina Baker and Henry Tran, who have gone on to take leadership roles in the company.

Fibron's CEO, Christian Behrenbruch, said "working with UCLA to develop this technology has been a win-win. It enables us to access incredibly innovative people, but also, the NSF has helped enable the establishment of a formal and transparent IP releationship with the university. The good news is that this technology is moving rapidly into commercial development."

Other techniques exist for creating thin films of conducting polymers, but each technique tends to work only a limited number of applications, or they are not feasible for scaling up. A method has long been sought which would overcome the limitations of each of the previous methods. The water and oil technique, with a bit of nanotechnology thrown in, might provide just that a scalable universal method for creating large thin films of conducting polymers.


'/>"/>

Contact: Mike Rodewald
mrodewald@cnsi.ucla.edu
310-267-5883
University of California - Los Angeles
Source:Eurekalert

Related biology news :

1. Diversity of trees in Ecuadors Amazon rainforest defies simple explanation
2. Simple chemical procedure augments therapeutic potential of stem cells
3. A simple fusion to jump-start evolution
4. Artificial cells, simple model for complex structure
5. Simple test helps predict heart attack risk
6. Pitt-led researchers create quick, simple fluorescent detector for TB
7. Author says challenging simple concepts can save planet
8. Simple drug treatment may prevent nicotine-induced SIDS: Study
9. New blood tests promise simple, cost-effective diagnosis of gastrointestinal cancers
10. Scientists take step toward simple and portable tuberculosis tests for developing world
11. Simple test could offer cheap solution to detecting landmines
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/11/2016)... CHICAGO , Jan. 11, 2016  higi, ... via nearly 10,000 retail locations, web and mobile, ... than $40 million from existing investors. ... will be devoted to further innovate higi,s health ... app and web portal – including expanding services ...
(Date:1/7/2016)... , Jan. 7, 2016 This BCC Research ... for biometric technologies and devices, identifying newer markets and ... various types of biometric devices. Includes forecast from 2015 ... Identify newer markets and explore the expansion of the ... Examine each type of biometric technology, determine its current ...
(Date:1/6/2016)... 2016  Varam Capital, a provider of micro-finance inclusion ... deliver advanced authentication solutions to their clients. Varam supplies ... A loan of a few thousand rupees may make ... ability to purchase livestock or equipment for a small ... for a local store. ...
Breaking Biology News(10 mins):
(Date:2/3/2016)... N.J. , Feb. 3, 2016 ... totaling more than $1 million for researchers in ... working on health-related research that demonstrates exciting potential. ... round of funding for the New Jersey Health Foundation ... faculty members at these educational institutions— Princeton University, ...
(Date:2/3/2016)... ... 2016 , ... ProMIS Neurosciences is currently in the process ... propagating strains of Amyloid beta involved in Alzheimer’s disease. The Company plans to ... on from the first misfolded Amyloid beta target announced on Nov. 12, 2015, ...
(Date:2/3/2016)... ... February 03, 2016 , ... ... annual report which summarizes and analyzes nearly 750 unique supply chain notifications ... and analysis service. , Supply chain risk management practitioners subscribe to the ...
(Date:2/3/2016)... Feb. 3, 2016  Today, Symphony Technology Group (STG) ... , a leading provider of primary research and analytics-based ... IMS Health , a global information and technology services ... and technologies will be integrated into IMS Health to ... market research capabilities. ...
Breaking Biology Technology: