Navigation Links
RUB researchers find over active enzyme in failing hearts
Date:1/17/2013

A certain enzyme, the CaM kinase II, keeps the cardiac muscle flexible. By transferring phosphate groups to the giant protein titin, it relaxes the muscle cells. This is reported by researchers led by Prof. Dr. Wolfgang Linke of the Institute of Physiology at the Ruhr Universitt in the journal Circulation Research. In failing hearts, which don't pump enough blood around the body, the scientists found an overly active CaM kinase II. "The phosphorylation of titin could be a new starting point for the treatment of heart failure" Prof. Linke speculates.

Titin phosphorylation determines the mechanical tension of the muscle cell

Titin is the largest protein in the human body, and it acts like a spring which tenses or relaxes the muscle cell. The attachment of phosphate groups to specific titin sites - known as phosphorylation - relaxes the cell. It was already known that the calcium/calmodulin-dependent kinase II, CaM kinase II for short, phosphorylates several proteins in heart cells. Whether it also targets the spring protein titin, has now been examined by the researchers in Bochum.

CaM-Kinase II phosphorylates the giant protein titin

For the study, the researchers used heart cells of "normal" mice, mice that have no CaM kinase II, and mice that produce more CaM kinase II than usual. In cells without the enzyme, titin phosphorylation was reduced by more than 50 percent compared to the normal state. In cells with excess enzyme, however, titin phosphorylation was twice as strong as in normal cells. The CaM kinase II is therefore crucial for the attachment of phosphate groups to the giant protein titin. Linke's team identified two regions within the flexible segment of the titin molecule which are phosphorylated by the enzyme, namely the PEVK and N2Bus region. These sites contain several amino acids of the type serine and threonine, which have changed little in the course of evolution.

The work of the CaM kinase II determines cell stiffness

In further analyses, the research team also showed that a lack or an excess of CaM kinase II affected the stiffness of the muscle cells. Cells without the enzyme were stiffer, cells with the enzyme more flexible. If they added CaM kinase II to cells that were not able to produce the enzyme themselves, these relaxed. In failing human hearts, the team found increased activity of CaM kinase II in comparison with healthy hearts, and thus excessive phosphorylation in the PEVK and N2Bus titin regions. "This seems to alter the mechanical properties of the human heart muscle", says Wolfgang Linke.


'/>"/>

Contact: Wolfgang Linke
wolfgang.linke@rub.de
49-234-322-9101
Ruhr-University Bochum
Source:Eurekalert

Related biology news :

1. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
2. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
3. Researchers attempt to solve problems of antibiotic resistance and bee deaths in one
4. UNH researchers find African farmers need better climate change data to improve farming practices
5. Ottawa researchers to lead world-first clinical trial of stem cell therapy for septic shock
6. Researchers uncover molecular pathway through which common yeast becomes fungal pathogen
7. Researchers print live cells with a standard inkjet printer
8. Columbia Engineering and Penn researchers increase speed of single-molecule measurements
9. Researchers reveal how a single gene mutation leads to uncontrolled obesity
10. Researchers discover novel therapy for Crohns disease
11. New paper by Notre Dame researchers describes method for cleaning up nuclear waste
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/19/2017)... , Jan. 19, 2017 Sensory ... experience and security for consumer electronics, and ... processing systems and cybersecurity solutions, today announced a ... and financial institutions worldwide to bolster security of ... end-to-end secure user authentication platforms they offer, innerCore ...
(Date:1/12/2017)... , Jan. 12, 2017  New research undertaken by ... office of the future.  1,000 participants were simply asked which ... months which we may consider standard issue.  Insights on what ... 2017 were also gathered from futurists and industry leaders including ... James Canton .  Some of ...
(Date:1/6/2017)...  SomaLogic announced today that it has agreed ... iCarbonX, the China -based company ... Health Ecosystem that can define each person,s ,digital ... behavioral and psychological data, the Internet and artificial ... will provide proteomics data and applications expertise to ...
Breaking Biology News(10 mins):
(Date:1/19/2017)... 2017 Research and Markets has announced the ... Cancer Type, Application - Global Opportunity Analysis and Industry Forecast, 2014-2022" ... ... market is projected to reach $15,737 million by 2022 from $6,521 ... 2022. Omic technologies segment accounted for more than ...
(Date:1/19/2017)... Jan 19, 2017 Research and Markets ... has announced the addition of the ... - Forecast to 2025" report to their offering. ... The report provides a detailed analysis on current and future market ... 2025, using estimated market values as the base numbers ...
(Date:1/19/2017)... , Jan. 19, 2017  ArmaGen, Inc., today ... , Ph.D., as chief executive officer, as well ... Dr. Schmidt brings to ArmaGen more than 17 years ... and development of biotherapeutics and pharmaceuticals. ... the diverse experience and skillset necessary to lead ...
(Date:1/19/2017)... NY (PRWEB) , ... January 19, 2017 , ... FireflySci ... an exponential rate. The tremendous growth is accounted to two main factors. ... table and the expanding network of vendors supplying FireflySci products all around the world. ...
Breaking Biology Technology: