Navigation Links
RUB researchers find over active enzyme in failing hearts
Date:1/17/2013

A certain enzyme, the CaM kinase II, keeps the cardiac muscle flexible. By transferring phosphate groups to the giant protein titin, it relaxes the muscle cells. This is reported by researchers led by Prof. Dr. Wolfgang Linke of the Institute of Physiology at the Ruhr Universitt in the journal Circulation Research. In failing hearts, which don't pump enough blood around the body, the scientists found an overly active CaM kinase II. "The phosphorylation of titin could be a new starting point for the treatment of heart failure" Prof. Linke speculates.

Titin phosphorylation determines the mechanical tension of the muscle cell

Titin is the largest protein in the human body, and it acts like a spring which tenses or relaxes the muscle cell. The attachment of phosphate groups to specific titin sites - known as phosphorylation - relaxes the cell. It was already known that the calcium/calmodulin-dependent kinase II, CaM kinase II for short, phosphorylates several proteins in heart cells. Whether it also targets the spring protein titin, has now been examined by the researchers in Bochum.

CaM-Kinase II phosphorylates the giant protein titin

For the study, the researchers used heart cells of "normal" mice, mice that have no CaM kinase II, and mice that produce more CaM kinase II than usual. In cells without the enzyme, titin phosphorylation was reduced by more than 50 percent compared to the normal state. In cells with excess enzyme, however, titin phosphorylation was twice as strong as in normal cells. The CaM kinase II is therefore crucial for the attachment of phosphate groups to the giant protein titin. Linke's team identified two regions within the flexible segment of the titin molecule which are phosphorylated by the enzyme, namely the PEVK and N2Bus region. These sites contain several amino acids of the type serine and threonine, which have changed little in the course of evolution.

The work of the CaM kinase II determines cell stiffness

In further analyses, the research team also showed that a lack or an excess of CaM kinase II affected the stiffness of the muscle cells. Cells without the enzyme were stiffer, cells with the enzyme more flexible. If they added CaM kinase II to cells that were not able to produce the enzyme themselves, these relaxed. In failing human hearts, the team found increased activity of CaM kinase II in comparison with healthy hearts, and thus excessive phosphorylation in the PEVK and N2Bus titin regions. "This seems to alter the mechanical properties of the human heart muscle", says Wolfgang Linke.


'/>"/>

Contact: Wolfgang Linke
wolfgang.linke@rub.de
49-234-322-9101
Ruhr-University Bochum
Source:Eurekalert

Related biology news :

1. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
2. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
3. Researchers attempt to solve problems of antibiotic resistance and bee deaths in one
4. UNH researchers find African farmers need better climate change data to improve farming practices
5. Ottawa researchers to lead world-first clinical trial of stem cell therapy for septic shock
6. Researchers uncover molecular pathway through which common yeast becomes fungal pathogen
7. Researchers print live cells with a standard inkjet printer
8. Columbia Engineering and Penn researchers increase speed of single-molecule measurements
9. Researchers reveal how a single gene mutation leads to uncontrolled obesity
10. Researchers discover novel therapy for Crohns disease
11. New paper by Notre Dame researchers describes method for cleaning up nuclear waste
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... Florida , April 11, 2017 ... a security technology company, announces the appointment of independent Directors ... Bendheim to its Board of Directors, furthering the company,s ... ... of NXT-ID, we look forward to their guidance and benefiting ...
(Date:4/5/2017)... KEY FINDINGS The global market ... CAGR of 25.76% during the forecast period of 2017-2025. ... for the growth of the stem cell market. ... MARKET INSIGHTS The global stem cell market is segmented ... The stem cell market of the product is segmented ...
(Date:3/30/2017)... March 30, 2017 The research team of ... three-dimensional (3D) fingerprint identification by adopting ground breaking 3D fingerprint minutiae ... realm of speed and accuracy for use in identification, crime investigation, ... cost. ... A research ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... The CRISPR-Cas9 ... overexpression experiments and avoiding the use of exogenous expression plasmids. The simplicity of ... performing systematic gain-of-function studies. , This complement to loss-of-function studies, such as ...
(Date:10/11/2017)... BioMarketing, a leading provider of patient support solutions, has announced ... network, which will launch this week. The VMS CNEs will ... to enhance the patient care experience by delivering peer-to-peer education ... professionals to help women who have been diagnosed and are ... ...
(Date:10/11/2017)... ... 11, 2017 , ... Singh Biotechnology today announced that the ... its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) B VHH13 single ... the cell membrane and bind intracellular STAT3 and inhibit its function. Dysregulation of ...
(Date:10/10/2017)... ... October 10, 2017 , ... Dr. Bob Harman, founder and CEO of ... Club. The event entitled “Stem Cells and Their Regenerative Powers,” was ... Dr. Harman, DVM, MPVM was joined by two human doctors: Peter B. Hanson, M.D., ...
Breaking Biology Technology: