Navigation Links
RUB researchers decipher the molecular basis of blue-green algae
Date:8/1/2011

Under normal conditions, cyanobacteria, also termed blue-green algae, build up energy reserves that allow them to survive under stress such as long periods of darkness. They do this by means of a molecular switch in an enzyme. By removing this switch, it should be possible to use the excess energy of the bacteria for biotechnological purposes such as hydrogen production, without the bacteria suffering. This was found out by researchers at the Ruhr-Universitt led by Prof. Dr. Matthias Rgner (Biochemistry of Plants, Faculty of Biology and Biotechnology). Their results, which they obtained together with a Japanese research group from the Tokyo Institute of Technology, are published in the Journal of Biological Chemistry.

Molecular switch prevents waste of energy

The energy-rich molecule ATP serves as a store for the energy gained through photosynthesis in plants. It is built up, and where necessary broken down again, by the enzyme ATPase. To guard the bacterium against stress situations with too much or too little light, the ATPase of the cyanobacteria has a small area which acts like a switch. It prevents the ATP from being broken down prematurely in the dark, when no photosynthesis takes place. The bacterium thus creates a store of energy which helps it through stress phases. However, this switch also slows the rate of photosynthetic electron transport with the water splitting in light: "You have to imagine it like wanting to squeeze something into a full storehouse against resistance", says Prof. Rgner.

On the way to biotechnological hydrogen

In the experiment, he and his colleagues removed the switch area of the ATPase in cyanobacteria by means of genetic engineering. "Of course we expected that the bacteria would suffer much more afterwards and that they would become much slower", he explains. "But that was not the case". The bacteria grew just as usual under laboratory conditions - without light stress. However, they create lower ATP energy reserves, so they can't survive very long dark periods as well as the wild type. On the other hand, the excess energy in light, which otherwise went into the reserves, is now available for biotechnological use. "This should make it possible to use at least 50% of the energy gained from light-driven water splitting for other processes in the future, e.g. for solar-powered biological hydrogen production through cyanobacterial mass cultures in photobioreactors", estimates Prof. Roegner.


'/>"/>

Contact: Prof. Dr. Matthias Rgner
0049-234-322-3634
Ruhr-University Bochum
Source:Eurekalert

Related biology news :

1. NC State researchers get to root of parasite genome
2. Researchers find animal with ability to survive climate change
3. Researchers find an essential gene for forming ears of corn
4. Researchers note differences between people and animals on calorie restriction
5. Researchers study acoustic communication in deep-sea fish
6. Researchers discover that growing up too fast may mean dying young in honey bees
7. Researchers study how pistachios may improve heart health
8. UI researchers find potentially toxic substance present in Chicago air
9. Researchers develop new self-training gene prediction program for fungi
10. Case Western Reserve University researchers track Chernobyl fallout
11. Childrens National researchers develop novel anti-tumor vaccine
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/20/2016)... and GENEVA, Dec, 20, 2016   Valencell , ... technology, and STMicroelectronics (NYSE: STM), a global ... electronics applications, announced today the launch of a ... biometric wearables that includes ST,s compact SensorTile ... Benchmark™ biometric sensor system. Together, SensorTile and ...
(Date:12/16/2016)... , Dec. 16, 2016 The global wearable medical ... 12.14 billion by 2021 from USD 5.31 billion in 2016, at ... ... mainly driven by technological advancements in medical devices, launch of a ... preference for wireless connectivity among healthcare providers, and increasing focus on ...
(Date:12/15/2016)... 2016 Advancements in biometrics will ... and wellbeing (HWW), and security of vehicles ... passenger vehicles begin to feature fingerprint recognition, ... beat monitoring, brain wave monitoring, stress detection, ... pulse detection. These will be driven by ...
Breaking Biology News(10 mins):
(Date:1/18/2017)... ... January 18, 2017 , ... uBiome, the leading microbial genomics ... Science Editor, Dr. Elisabeth Bik, in the December 2016 issue of the Dutch ... in October 2016 from her previous position at Stanford University School of Medicine ...
(Date:1/18/2017)...  Caris Life Sciences, a leading innovator in ... private funder of pancreatic cancer research, are collaborating ... of immunotherapy in the treatment of pancreatic cancer. ... identify potential trial candidates based on biomarker expression ... study investigators. The Lustgarten Foundation is a sponsor ...
(Date:1/17/2017)... West Point, IA (PRWEB) , ... January 17, ... ... approval from China for Balance™ GT soybeans. The new Balance™ GT Soybean Performance ... tolerance to glyphosate and isoxaflutole, the active ingredient in the new Balance® Bean ...
(Date:1/17/2017)... Ind. , Jan. 17, 2017  Zimmer Biomet ... fourth quarter and full-year 2016 sales and earnings conference ... Tuesday, January 31, 2017, at 8 a.m. Eastern Time.  ... will be made available at 7:30 a.m. Eastern Time ... live audio webcast can be accessed via Zimmer Biomet,s ...
Breaking Biology Technology: