Navigation Links
RUB researchers decipher the molecular basis of blue-green algae
Date:8/1/2011

Under normal conditions, cyanobacteria, also termed blue-green algae, build up energy reserves that allow them to survive under stress such as long periods of darkness. They do this by means of a molecular switch in an enzyme. By removing this switch, it should be possible to use the excess energy of the bacteria for biotechnological purposes such as hydrogen production, without the bacteria suffering. This was found out by researchers at the Ruhr-Universitt led by Prof. Dr. Matthias Rgner (Biochemistry of Plants, Faculty of Biology and Biotechnology). Their results, which they obtained together with a Japanese research group from the Tokyo Institute of Technology, are published in the Journal of Biological Chemistry.

Molecular switch prevents waste of energy

The energy-rich molecule ATP serves as a store for the energy gained through photosynthesis in plants. It is built up, and where necessary broken down again, by the enzyme ATPase. To guard the bacterium against stress situations with too much or too little light, the ATPase of the cyanobacteria has a small area which acts like a switch. It prevents the ATP from being broken down prematurely in the dark, when no photosynthesis takes place. The bacterium thus creates a store of energy which helps it through stress phases. However, this switch also slows the rate of photosynthetic electron transport with the water splitting in light: "You have to imagine it like wanting to squeeze something into a full storehouse against resistance", says Prof. Rgner.

On the way to biotechnological hydrogen

In the experiment, he and his colleagues removed the switch area of the ATPase in cyanobacteria by means of genetic engineering. "Of course we expected that the bacteria would suffer much more afterwards and that they would become much slower", he explains. "But that was not the case". The bacteria grew just as usual under laboratory conditions - without light stress. However, they create lower ATP energy reserves, so they can't survive very long dark periods as well as the wild type. On the other hand, the excess energy in light, which otherwise went into the reserves, is now available for biotechnological use. "This should make it possible to use at least 50% of the energy gained from light-driven water splitting for other processes in the future, e.g. for solar-powered biological hydrogen production through cyanobacterial mass cultures in photobioreactors", estimates Prof. Roegner.


'/>"/>

Contact: Prof. Dr. Matthias Rgner
0049-234-322-3634
Ruhr-University Bochum
Source:Eurekalert

Related biology news :

1. NC State researchers get to root of parasite genome
2. Researchers find animal with ability to survive climate change
3. Researchers find an essential gene for forming ears of corn
4. Researchers note differences between people and animals on calorie restriction
5. Researchers study acoustic communication in deep-sea fish
6. Researchers discover that growing up too fast may mean dying young in honey bees
7. Researchers study how pistachios may improve heart health
8. UI researchers find potentially toxic substance present in Chicago air
9. Researchers develop new self-training gene prediction program for fungi
10. Case Western Reserve University researchers track Chernobyl fallout
11. Childrens National researchers develop novel anti-tumor vaccine
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/23/2017)... PUNE, India , March 23, 2017 The report ... Equipment, Touchless Biometric), Industry, and Geography - Global Forecast to 2022", published by ... growing at a CAGR of 29.63% between 2017 and 2022. ... ... Logo ...
(Date:3/22/2017)... YORK , March 21, 2017 ... Marketing Cloud used by retailers such as 1-800-Flowers ... its platform — Product Recommendations and Replenishment. Using Optimove,s ... give more personalized product and replenishment recommendations to ... but also on predictions of customer intent drawn ...
(Date:3/20/2017)... March 20, 2017 PMD Healthcare announces the ... and Wellness Management System (WMS), a remote, real-time lung ... 2010, PMD Healthcare is a Medical Device, Digital Health, ... dedicated to creating innovative solutions that empower people to ... intent focus, PMD developed the first ever personal spirometer, ...
Breaking Biology News(10 mins):
(Date:4/21/2017)... , ... April 21, 2017 , ... ... dedicated to nourishing a range of emerging bio and technology start-ups, is hosting ... 21, 2017. This double event will start with libations and networking at 3:30 ...
(Date:4/20/2017)... (PRWEB) , ... April 20, 2017 , ... USDM ... for the life sciences and healthcare industries, is pleased to announce Holger Braemer ... established USDM subsidiary “USDM Europe GmbH” based in Germany. , Braemer is an ...
(Date:4/20/2017)... ... April 20, 2017 , ... Parallel6™ , the leader in mClinical™ technologies ... they were named one of the 2017 Top 10 eClinical Trial Management Solution ... pharmaceutical industry. , “We take pride in honoring Parallel6 as one of the top ...
(Date:4/19/2017)... ... , ... The Vibrating Orifice Aerosol Generator (VOAG) was developed ... of known diameters for research applications such as for calibrating droplet measuring instruments, ... droplets. , The VOAG requires forcing liquid out of an orifice about ...
Breaking Biology Technology: