Navigation Links
Quantitative imaging application to gut and ear cells are reported in 2 Nature papers
Date:1/15/2012

BOSTON, MA -- From tracking activities within bacteria to creating images of molecules that make up human hair, several experiments have already demonstrated the unique abilities of the revolutionary imaging technique called multi-isotope imaging mass spectometry, or MIMS, developed by researchers at Brigham and Women's Hospital (BWH). MIMS can produce high-resolution, quantitative three-dimensional images of stable isotope tags within subcellular compartments in tissue sections or cells.

With its use of stable isotopes as tracers, MIMS has opened the door for biomedical researchers to answer various biological questions, as two new studies have demonstrated. These studies looked at the use of MIMS in tracking cell division in intestinal stem cells, lipid turnover in Drosophila flies, protein turnover in ear cells, and opened the way to human application by detecting the formation of new white blood cells. Both studies will be published in Nature online on January 15, 2012 and in print on January 26, 2012.

In the first study, researchers used MIMS to test the much debated "immortal strand hypothesis" which claims that as stem cells divide, the older template DNA remains together in a stem cell, as the newer DNA is passed to cells that differentiate forming the digestive lining of the small intestine.

By tagging DNA with stable isotope tracers, researchers tracked DNA replication as cells divided. They found that in any situation DNA segregation was random, thereby disproving the immortal strand hypothesis.

The research opened another door by studying lipid metabolism within single lipid droplets of the fat body and of the central nervous system of Drosophila larvae. The researchers were also able to translate their work to humans. In a pilot study, they used MIMS to successfully track the formation of new white blood cells after administering isotope tracers in a healthy human volunteer.

The second study demonstrated that protein turnover in stereocilia in the inner ear is extremely slow contrary to the prevalent belief in the field. Stereocilia are hair-like projections found in cells of the inner ear that are responsible for hearing and maintaining balance. Using MIMS, researchers saw that protein turnover was very slow throughout the stereocilia, except the tip at the location of the mechanoelectrical transduction apparatus.

MIMS was created by developing several toolsan ion microscope/secondary-ion mass spectrometer, labeling with stable isotopes, and quantitative image-analysis software. Unlike other imaging technologies, MIMS does not require staining or the use of radioactive labeling. MIMS enables researchers to conduct experiments with safe, non-toxic stable isotopes, which are naturally occurring components of all living matter.


'/>"/>
Contact: Marjorie Montemayor-Quellenberg
mmontemayor-quellenberg@partners.org
617-534-2208
Brigham and Women's Hospital
Source:Eurekalert

Related biology news :

1. NPL unveils quantitative means of monitoring ultrasonic cleaning systems
2. SNM releases new fact sheet on breast cancer and molecular imaging
3. Cheskin Added Value EVP Lee Shupp Discusses Evolving Dynamics of Consumers and Imaging Tech at 6Sight
4. MU brain imaging center provides research for autism, schizophrenia and Parkinsons disease
5. Similarities in imaging the human body, Earths crust focus of conference at UH
6. UNC expands brain imaging study of infants at risk for autism
7. Studies on imaging and tracking transplanted cells
8. Fattysaurus or thinnysaurus? How dinosaurs measure up with laser imaging
9. SNM Symposium on Multimodality Cardiovascular Molecular Imaging
10. Ultrasound imaging now possible with a smartphone
11. First neuroimaging study examining motor execution in children with autism reveals new insights
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/19/2016)... UAE, April 20, 2016 The ... as a compact web-based "all-in-one" system solution for all ... fingerprint reader or the door interface with integration authorization ... access control systems. The minimal dimensions of the access ... into the building installations offer considerable freedom of design ...
(Date:4/14/2016)... April 14, 2016 BioCatch ... Detection, today announced the appointment of Eyal Goldwerger ... role. Goldwerger,s leadership appointment comes at a ... of the deployment of its platform at several of ... technology, which discerns unique cognitive and physiological factors, is ...
(Date:3/31/2016)... R.I. , March 31, 2016  Genomics firm ... of founding CEO, Barrett Bready , M.D., who ... members of the original technical leadership team, including Chief ... President of Product Development, Steve Nurnberg and Vice President ... returned to the company. Dr. Bready served ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Rolf ... join the faculty of the University of North Carolina Kenan-Flagler Business School ... and entrepreneurship at UNC Kenan-Flagler, with a focus on the school’s international efforts, ...
(Date:6/24/2016)... ... 2016 , ... While the majority of commercial spectrophotometers and fluorometers use the ... models are higher end machines that use the more unconventional z-dimension of 20mm. ... the bottom of the cuvette holder. , FireflySci has developed several Agilent flow ...
(Date:6/23/2016)... 2016 /PRNewswire/ - FACIT has announced the creation ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" or "the ... a portfolio of first-in-class WDR5 inhibitors for the ... WDR5 represent an exciting class of therapies, possessing ... for cancer patients. Substantial advances have been achieved ...
(Date:6/23/2016)... , June, 23, 2016  The Biodesign Challenge ... envision new ways to harness living systems and biotechnology, ... Art (MoMA) in New York City ... 130 participating students, showcased projects at MoMA,s Celeste Bartos ... Paola Antonelli , MoMA,s senior curator of architecture and ...
Breaking Biology Technology: