Navigation Links
Quakes under Pacific floor reveal unexpected circulatory system
Date:1/9/2008

Jan. 7, 2008Zigzagging some 60,000 kilometers across ocean floors, earths system of mid-ocean ridges plays a pivotal role in many workings of the planet, from its plate-tectonic movements to heat flow from the interior, and the chemistry of rock, water and air. It was not until the late 1970s that scientists discovered the existence of vast plumbing systems under the ridges, which pull in cold water, superheat it, then spit it back out from seafloor ventsa process that brings up not only hot water, but dissolved substances taken from rocks below. Unique life forms feed off the vents stew, and valuable minerals including gold may pile up. Now, a team of seismologists working under 2,500 meters of water on the East Pacific Rise, some 565 miles southwest of Acapulco, Mexico, has created the first images of one of these systemsand it does not look the way most scientists had assumed. The resulting study appears in the Jan. 10 issue of the journal Nature.

The hypothetical image of a hydrothermal-vent system shows water forced down by overlying pressure through large faults along ridge flanks. The water is heated by shallow volcanism, then rises toward the ridges middles, where vents (often called black smokers, for the cloud of chemicals they exude) tend to cluster. The new images, from a 4-kilometer-square area show a very different arrangement. The water appears to descend instead through a sort of buried 200-meter-wide chimney atop the ridge, run below the ridge along its axis through a tunnel-like zone just above a magma chamber, and then bubble back up through a series of vents further along the ridge. If you google on images of hydrothermal vents, you come up with cartoons that dont at all match what we see, said lead author Maya Tolstoy, a marine seismologist at Lamont-Doherty Earth Observatory, part of Columbia Universitys Earth Institute.

The images were created using seismometers planted around the ridge to record tiny, shallow earthquakesin this study, 7,000 of them, over 7 months in 2003 and 2004. Using new techniques developed by Lamont seismologist Felix Waldhauser, the quakes were located with great precision. They cluster neatly, outlining the cold waters apparent entrance. It dives straight down through the ridge about 700 meters, then fans out into a horizontal band about 200 meters wide before bottoming out at about 1.5 kilometers, just above the magma. Heated water rises back up through a dozen vents about 2 kilometers north along the ridge. The researchers interpret the quakes as the result of cold water passing through hot rocks and picking up their heata process that shrinks the rocks, and cracks them, creating the small quakes.

The downflow zone is thought to have been formed initially by a kink in the ridge, which stresses the rock enough to crack it mechanically. Seawater, forced down into the resulting space, eventually gets heated by the magma, then rises back to the seafloormuch the same process seen in a pot of boiling water. Tolstoy and her coauthors believe the water travels not through large faultsthe model previously favored by some scientists--but through systems of tiny cracks. Furthermore, their calculations suggest that the water moves a lot faster than previously thoughtperhaps a billion gallons per year through this particular system. Their chart of the waters route is reinforced by biologists observations from submersible dives that the area around the downflow chimney is more or less lifeless, while the surging vents are a riot of bacterial mats, mussels, tubeworms, and other weird creatures that thrive off the heat and chemicals.

Its an exciting and substantial contribution. It begins to look at some really big questions, said Dan Fornari, a marine geologist at Woods Hole Oceanographic Institution who was not involved in the study. Among other things, it is a mystery where vent organisms came from--some evolutionary biologists believe they originated life on earthand how or whether they now make their way from one isolated vent system to another. The findings could add to an understanding of seafloor currents along which they may move, and of the nutrient flows that feed them. The work also has large-scale implications for how heat and chemicals are cycled to the seafloor and overlying waters, said Tolstoy. On a practical level, many large ore bodies now on land are thought to have been formed by such systems.

The work is part of a larger long-term interdisciplinary look at the East Pacific Rise, funded by the U.S. National Science Foundation. Scientists from Lamont and other institutions are still retrieving and analyzing data from earlier cruises. In 2006, a volcanic eruption buried some of their instruments; most of the instruments were lost, but those that survived provided new information about how the eruptions work. This summer, researchers hope to return aboard the new Lamont-operated vessel Marcus G. Langseth to generate unprecedented 3D images of the ridges interior.


'/>"/>

Contact: Kevin Krajick
kkrajick@ei.columbia.edu
212-854-9729
The Earth Institute at Columbia University
Source:Eurekalert  

Related biology news :

1. Radioactive understudy may aid medical imaging, drug development
2. Insects giant leap reconstructed by founder of sociobiology
3. Katherine Freed wins first place at the International ISPE Undergraduate Poster Contest
4. Computational mathematical sciences receives NSF grant for undergraduate research
5. BGSU undergraduates to pilot groundbreaking genome project
6. Indigenous water frogs under threat
7. Atmospheric measuring device for understanding smog formation
8. Sunbathing tree frogs future under a cloud
9. Market testing of dietary supplements and drugs underscores value of USPs public health programs
10. Opium and marijuana research go underground
11. Mice help researchers understand chlamydia
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Quakes under Pacific floor reveal unexpected circulatory system
(Date:2/3/2016)... , February 3, 2016 ... new market research report "Automated Fingerprint Identification System Market ... Latent Search), Application (Banking & Finance, Government, Healthcare, and ... by MarketsandMarkets, the market is expected to be worth ... of 21.0% between 2015 and 2020. The transformation and ...
(Date:2/2/2016)... This BCC Research report provides a ... the recent advances in high throughput ‘omic platforms ... forward. Includes forecast through 2019. Use ... opportunities that exist in the bioinformatic market. Analyze ... well as IT and bioinformatics service providers. Analyze ...
(Date:2/2/2016)... 2, 2016  Based on its recent analysis ... recognizes US-based Intelligent Retinal Imaging Systems (IRIS) with ... for New Product Innovation. IRIS, a prominent cloud-based ... America , is poised to set the ... retinopathy market. The IRIS technology presents superior price-performance ...
Breaking Biology News(10 mins):
(Date:2/4/2016)... , February 4, 2016 ... a biotechnology acceleration company is pleased to provide the following ... --> Over the last 3 months we have ... securities purchase agreements exceeding $1,000,000. As a result, we have ... Mannin Research Inc. license agreement and expect that development to ...
(Date:2/4/2016)... Md. , Feb. 4, 2016  Spherix Incorporated ... to the fostering and monetization of intellectual property, today ... and Uniden in the Northern District of ... moving forward.  Inter Partes Re-examination ... U.S. Patent Office.  The IPR was initiated on only ...
(Date:2/4/2016)... ... February 04, 2016 , ... ... leading supplier of Semantic Graph Database technology has been recognized As “ Best ... by Corporate America Magazine. , “At Corporate America, it’s our priority to showcase ...
(Date:2/4/2016)... ... February 04, 2016 , ... Many of the engineers at FireflySci, Inc. ... What sets them apart from other cuvette manufacturers is their supercharged customer service and ... On top of this steady flow of inside information, they have recently revamped their ...
Breaking Biology Technology: