Navigation Links
Putting light-harvesters on the spot
Date:10/19/2011

How the light-harvesting complexes required for photosynthesis get to their site of action in the plant cell is reported by RUB biologists in the Journal of Biological Chemistry. The team led by Prof. Dr. Danja Schnemann (RUB working group on the molecular biology of plant organelles) has demonstrated for the first time that a membrane protein interacts with a single soluble protein to anchor the subunits of the light-harvesting complexes in the membrane. The researchers propose a new model that explains the integration into the membrane through the formation of a pore.

Light harvesting

Photosynthesis occurs in special areas of the plant cells, the chloroplasts, whereby the energy-converting process takes place in specific protein complexes (photosystems). To capture the light energy and efficiently transmit it to the photosystems, light-harvesting complexes are required which work like antenna. "The proteins of the light-harvesting complexes are the most abundant membrane proteins on Earth" says Dr. Beatrix Dnschede of the RUB. "There is a special transport mechanism that conveys them into the chloroplasts and incorporates them into the photosynthetic membrane". Exactly how the various transport proteins interact with each other had, up to now, been unclear.

Interaction between only two proteins

Several soluble proteins and the membrane protein Alb3 that channels the proteins of the light-harvesting complexes into the membrane are involved in the transport. Bochum's biologists examined intact, isolated plant cells and found that, for this purpose, Alb3 interacts with only a single soluble transport protein (cpSRP43). They confirmed this result in a second experiment with artificial membrane systems. "In a further experiment, we identified the region in Alb3 to which the soluble protein cpSRP43 binds" explains the RUB biologist Dr. Thomas Bals. "It turned out that the binding site is partly within the membrane and thus cannot be freely accessible for cpSRP43."

Through the pore into the membrane

Schnemann's team explains the data with a new model. The soluble transport proteins bind the proteins of the light-harvesting complexes and transport them to the membrane. There, the soluble transport protein cpSRP43 interacts with the membrane protein Alb3, which then forms a pore. The proteins of the light-harvesting complexes get into the pore, and from there they are released laterally into the membrane. "There are proteins in other organisms which are very similar to Alb3 and apparently also form pores" says Dnschede. "This supports our model. We are now planning new experiments in order to recreate the entire transport path in an artificial system."


'/>"/>

Contact: Dr. Danja Schuenemann
danja.schuenemann@rub.de
49-234-322-4293
Ruhr-University Bochum
Source:Eurekalert

Related biology news :

1. Putting a price on sea fish
2. Putting trees on farms fundamental to future agricultural development
3. Putting the dead to work for conservation biology
4. Putting the dead to work
5. Putting a bulls-eye on the flu: Paper details influenzas structure for future drug targeting
6. Putting on the pounds after weight loss? Hit the gym to maintain health gains
7. By putting a ring on it, microparticles can be captured
8. Putting bacterial antibiotic resistance into reverse
9. Thrill-seeking holiday-makers are putting dolphins at risk
10. Thrill-seeking holidaymakers are putting dolphins at risk
11. Americans want Uncle Sams help putting healthy foods on their dinner table
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/8/2017)... 2017 The biometrics market has reached ... of organizations, desires to better authenticate or identify ... and challenge questions), biometrics is quickly working its ... market is driven by use cases, though there ... enterprise uses cases, with consumer-facing use cases encompassing ...
(Date:2/6/2017)... , Feb. 6, 2017 According to ... are driving border authorities to continue to embrace ... there are 2143 Automated Border Control (ABC) eGates ... deployed at more than 163 ports of entry ... to 2016 achieving a combined CAGR of 37%. ...
(Date:2/2/2017)... 1, 2017  Central to its deep commitment ... worldwide, The Japan Prize Foundation today announced the ... pushed the envelope in their respective fields of ... scientists are being recognized with the 2017 Japan ... only contribute to the advancement of science and ...
Breaking Biology News(10 mins):
(Date:2/16/2017)... ... ... EIT Digital has launched work to develop a new Smart IOT ... to get under way for the framework, which is designed to reduce the use ... to be transferred eventually to other industries that also require efficient IoT and management ...
(Date:2/16/2017)... , Feb. 16, 2017  MDNA Life ... the development of liquid biopsy tests based on ... into an exclusive license agreement with its first ... proprietary liquid biopsy test for prostate cancer, the ... Korea . This is the first overseas ...
(Date:2/16/2017)... Feb. 16, 2017   Biostage, Inc. (Nasdaq: ... biotechnology company developing bioengineered organ implants to treat cancers ... trachea, announced today the closing on February 15, 2017 ... of common stock and warrants to purchase 20,000,000 shares ... million. The offering was priced at $0.40 per share ...
(Date:2/16/2017)... N.J. , Feb. 16, 2017  Champions Oncology, ... in the development and sale of advanced technology solutions ... oncology drugs, today announced the addition of new cohorts ... These new models will expand Champions, product line ... head and neck cancer, AML, and non-small cell lung ...
Breaking Biology Technology: