Navigation Links
Putting bacterial antibiotic resistance into reverse
Date:4/25/2010

ANAHEIM, CA The use of antibiotics to treat bacterial infections causes a continual and vicious cycle in which antibiotic treatment leads to the emergence and spread of resistant strains, forcing the use of additional drugs leading to further multi-drug resistance.

But what if it doesn't have to be that way?

In a presentation at the American Society for Biochemistry and Molecular Biology's annual meeting, titled "Driving backwards the evolution of antibiotic resistance," Harvard researcher Roy Kishony will discuss his recent work showing that some drug combinations can stop or even reverse the normal trend, favoring bacteria that do not develop resistance. The talk will be in Anaheim Convention Center Room 304D, on Sunday April 25 at 3:30 pm PST.

"Normally, when clinicians administer a multi-drug regimen, they do so because the drugs act synergistically and speed up bacterial killing," Kishony explains. However, Kishony's laboratory has focused on the opposite phenomenon: antibiotic interactions that have a suppressive effect, namely when the combined inhibitory effect of using the two drugs together is weaker than that of one of the drugs alone.

Kishony and his team identified the suppressive interaction in E. coli, discovering that a combination of tetracycline which prevents bacteria from making proteins and ciprofloxacin which prevents them from copying their DNA was not as good as slowing down bacterial growth as one of the antibiotics (ciprofloxacin) by itself.

Kishony notes that this suppressive interaction can halt bacterial evolution, because any bacteria that develop a resistance to tetracycline will lose its suppressive effect against ciprofloxacin and die off; therefore, in a population the bacteria that remain non-resistant become the dominant strain.

While such a weakened antibiotic combination is not great from a clinical standpoint, the Kishony lab is using this discovery to set up a drug screening system that could identify novel drug combinations that could hinder the development of resistance but still act highly effectively. "Typical drug searches look for absolute killing effects, and choose the strongest candidates," he says. "Our approach is going to ask how these drugs affect the competition between resistant versus sensitive bacterial strains."

To develop such a screen, Kishony and his group first had to figure how this unusual interaction works.

"Fast growing bacteria like E. coli are optimized to balance their protein and DNA activity to grow and divide as quickly as the surrounding environment allows," Kishony explains. "However, when we exposed E. coli to the ciprofloxacin, we found that their optimization disappeared."

"We expected that since the bacteria would have more difficulty copying DNA, they would slow down their protein synthesis, too," Kishony continues. "But they didn't; they kept churning out proteins, which only added to their stress." However, once they added the tetracycline and protein synthesis was also reduced in the E. coli, they actually grew better than before. They then confirmed the idea that production of ribosomes - the cell components that make proteins - is too high under DNA stress by engineering E. coli strains that have fewer ribosomes than regular bacteria. While these mutants grew a more slowly in normal conditions, they grew faster under ciprofloxacin inhibition of DNA synthesis.

Kishony notes that their preliminary work on the development of a screen for drugs that put resistance in a disadvantage looks promising, and hopes that it would lead to the identification of novel drugs that select against resistance.


'/>"/>

Contact: Nicole Kresge
nkresge@asbmb.org
202-316-5447
Federation of American Societies for Experimental Biology
Source:Eurekalert

Related biology news :

1. Putting stem cell research on the fast track
2. Department of Energy putting power in the hands of consumers through technology
3. Putting a green cap on garbage dumps
4. Putting limits on vitamin E
5. Americans want Uncle Sams help putting healthy foods on their dinner table
6. Thrill-seeking holidaymakers are putting dolphins at risk
7. Thrill-seeking holiday-makers are putting dolphins at risk
8. Legionnaires bacterial proteins work together to survive
9. Scripps research team blocks bacterial communication system to prevent deadly staph infections
10. Small RNA plays parallel roles in bacterial metabolism
11. New drug targets may fight tuberculosis and other bacterial infections in novel way
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/7/2017)... BEACH, New York , February 7, 2017 /PRNewswire/ ... known as ID Global Solutions Corporation [OTC: IDGS], ("Ipsidy" ... identity management and electronic transaction processing services, is pleased ... reorganization of the Company. Effective January 31, ... of the Board of Directors, CEO and President.  An ...
(Date:2/3/2017)... Feb. 3, 2017 A new independent identity ... Partners, LLP (IdSP) . Designed to fill a critical ... identity market, founding partners Mark Crego and ... years just in identity expertise that span federal governments, ... leadership. The Crego-Kephart combined expertise has a common theme ...
(Date:2/2/2017)... Feb. 1, 2017  Central to its deep ... advances worldwide, The Japan Prize Foundation today announced ... have pushed the envelope in their respective fields ... Three scientists are being recognized with the 2017 ... not only contribute to the advancement of science ...
Breaking Biology News(10 mins):
(Date:2/23/2017)... (PRWEB) , ... February 23, 2017 , ... ... studies (such as insulin, cortisol, CRP, adiponectin, uric acid, and/or other biomarkers or ... Salivary Insulin Assay from Salimetrics’ SalivaLab , the relationship between insulin and ...
(Date:2/23/2017)... CARDIFF, UK (PRWEB) , ... February 22, 2017 ... ... for optics and photonics , have been named Fellows of the Society this ... and technical contributions in the multidisciplinary fields of optics, photonics, and imaging as ...
(Date:2/22/2017)... -- Scientists propose in Nature blocking a ... and maybe other lysosomal storage diseases as a possible ... therapies. An international research team led by ... included investigators from the University of Lübeck in ... The study was conducted in mouse models of lysosomal ...
(Date:2/22/2017)... , Feb 22, 2017 Dublin ... the "Global Biological Crop Protection (Bio-Pesticide) Market-By Type, By Application, ... report to their offering. ... Global Biological Crop Protection Market is forecasted to ... The strong growth in biopesticide or biological crop protection market is ...
Breaking Biology Technology: