Navigation Links
Purdue scientists reveal how bacteria build homes inside healthy cells
Date:12/20/2011

WEST LAFAYETTE, Ind. - Bacteria are able to build camouflaged homes for themselves inside healthy cells - and cause disease - by manipulating a natural cellular process.

Purdue University biologists led a team that revealed how a pair of proteins from the bacteria Legionella pneumophila, which causes Legionnaires disease, alters a host protein in order to divert raw materials within the cell for use in building and disguising a large structure that houses the bacteria as it replicates.

Zhao-Qing Luo, the associate professor of biological sciences who headed the study, said the modification of the host protein creates a dam, blocking proteins that would be used as bricks in cellular construction from reaching their destination. The protein "bricks" are then diverted and incorporated into a bacterial structure called a vacuole that houses bacteria as it replicates within the cell. Because the vacuole contains materials natural to the cell, it goes unrecognized as a foreign structure.

"The bacterial proteins use the cellular membrane proteins to build their house, which is sort of like a balloon," Luo said. "It needs to stretch and grow bigger as more bacterial replication occurs. The membrane material helps the vacuole be more rubbery and stretchy, and it also camouflages the structure. The bacteria is stealing material from the cell to build their own house and then disguising it so it blends in with the neighborhood."

The method by which the bacteria achieve this theft is what was most surprising to Luo.

The bacterial proteins, named AnkX and Lem3, modify the host protein through a biochemical process called phosphorylcholination that is used by healthy cells to regulate immune response. Phosphorylcholination is known to happen in many organisms and involves adding a small chemical group, called the phosphorylcholine moiety, to a target molecule, he said.

The team discovered that AnkX adds the phosphorylcholine moiety to a host protein involved in moving proteins from the cell's endoplasmic reticulum to their cellular destinations. The modification effectively shuts down this process and creates a dam that blocks the proteins from reaching their destination.

The bacterial protein Lem3 is positioned outside the vacuole and reverses the modification of the host protein to ensure that the protein "bricks" are free to be used in creation of the bacterial structure.

This study was the first to identify proteins that directly add and remove the phosphorylcholine moiety, Luo said.

"We were surprised to find that the bacterial proteins use the phosphorylcholination process and to discover that this process is reversible," he said. "This is evidence of a new way signals are relayed within cells, and we are eager to investigate it."

The team also found that the phosphorylcholination reaction is carried out at a specific site on the protein called the Fic domain. Previous studies had shown this site induced a different reaction called AMPylation.

It is rare for a domain to catalyze more than one reaction, and it was thought this site's only responsibility was to transfer the chemical group necessary for AMPylation, Luo said.

"Revealing that this domain has dual roles is very important to identify or screen for compounds to inhibit its activity and fight disease," he said. "This domain has a much broader involvement in biochemical reactions than we thought and may be a promising target for effective treatments."

During infection bacteria deliver hundreds of proteins into healthy cells that alter cellular processes to turn the hostile environment into one hospitable to bacterial replication, but the specific roles of only about 20 proteins are known, Luo said.

"In order to pinpoint proteins that would be good targets for new antibiotics, we need to determine their roles and importance to the success of infection," he said. "We need to understand at the biochemical level exactly what these proteins do and how they take over natural cellular processes. Then we can work on finding ways to block these activities, stop the infection and save lives."
'/>"/>

Contact: Elizabeth K. Gardner
ekgardner@purdue.edu
765-494-2081
Purdue University
Source:Eurekalert

Related biology news :

1. Purdue technology used in first fluorescence-guided ovarian cancer surgery
2. Purdue biologists identify new strategy used by bacteria during infection
3. Purdue-led team studies Earths recovery from prehistoric global warming
4. Purdue startup hopes to change the way we test cancer drugs
5. Purdue team creates engineered organ model for breast cancer research
6. NASA, Purdue study offers recipe for global warming-free industrial materials
7. Protein can help cells or cause cancer, Purdue researcher finds
8. Purdue study finds dairy better for bones than calcium carbonate
9. Purdue study suggests warmer temperatures could lead to a boom in corn pests
10. Purdue researcher invents molecule that stops SARS
11. Scientists identify an innate function of vitamin E
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/15/2016)...   WaferGen Bio-systems, Inc. (NASDAQ: ... today that on December 13, 2016, it received a ... Stock Market LLC which acknowledged that, as of December ... stock had been at $1.00 or greater for ten ... Listing Rule 5550(a)(2) of the Nasdaq Stock Market. ...
(Date:12/15/2016)... HILLS, Mich. , Dec. 15, 2016  There ... unlocking car doors or starting the engine. Continental will ... in Las Vegas . Through the ... (Passive Start and Entry) and biometric elements, the international ... field of vehicle personalization and authentication. "The ...
(Date:12/8/2016)... India , Dec. 8, 2016 Market Research Future ... Service Market. The global Mobile Biometric Security and Service Market is ... 2016 to 2022. Market Highlights: ... , , Mobile ... pace due to the increasing need of authentication and security from ...
Breaking Biology News(10 mins):
(Date:1/21/2017)... ... January 20, 2017 , ... ... to the healthcare industry ( http://www.gandlscientific.com ), has announced the opening of new ... clinical and scientific consultants and contractors. This is the latest step in G&L’s ...
(Date:1/21/2017)... ... January 21, 2017 , ... ... to bring to market a pioneering medical device for the treatment of Age-Related ... engagement contract with Emergo, a global regulatory consultancy that helps companies like ours ...
(Date:1/21/2017)... , Jan. 20, 2017 Bioptix, Inc. ... "Company"), announced that on January 14, 2017 the Board ... which the Company will terminate certain employees associated with ... Inc.  The Company commenced terminations on January 16, 2017 ... days.  The Company may pay severance benefits in certain ...
(Date:1/21/2017)... 2017   Boston Biomedical , an industry leader ... cancer stemness pathways, today presented data from two clinical ... 2017 American Society of Clinical Oncology (ASCO) Gastrointestinal Cancers ... In a Phase Ib/II study of napabucasin ... cancer stemness pathways by targeting STAT3 – colorectal cancer ...
Breaking Biology Technology: