Navigation Links
Purdue professor to speak before Congress about nanotechnology in brain treatment research
Date:5/21/2012

WEST LAFAYETTE, Ind. - Researchers at Purdue University are working with the U.S. Army and neurosurgeons at the Walter Reed National Military Medical Center to create a new type of "bioactive" coating for stents used to treat brain aneurisms including those caused by head trauma from bomb blasts.

"Stents coated with a bioactive coating might be inserted at the site of an aneurism to help heal the inside lining of the blood vessel," said Jean Paul Allain, an associate professor of nuclear engineering. "Aneurisms are saclike bulges in blood vessels caused by weakening of artery walls. We're talking about using a regenerative approach, attracting cells to reconstruct the arterial wall."

He will speak before Congress on Thursday (May 24) during the first Brain Mapping Day to discuss the promise of nanotechnology in treating brain injury and disease.

Purdue researchers are working with Col. Rocco Armonda, Dr. Teodoro Tigno and other neurosurgeons at Walter Reed National Military Medical Center in Bethesda, Md. Collaborations also are planned with research scientists from the University of Queensland in Australia, Universidad de Antioqua and Universidad de Los Andes, both in Colombia.

Portions of the stents - tubular structures made of a metallic mesh - will be designed using bioactive coatings to attract magnetized cells to repair blood vessels damaged in trauma.

The stent coatings are modified in a Purdue facility that uses beams of charged particles called ions to modify the stent coatings with a magnetic material. The ion beams also are used to create lifelike or "biomimetic" surface textures designed to promote cellular proliferation and repair damaged vessels, Allain said.

Findings will be detailed in an invited talk to be delivered by Allain during the Ninth Annual World Congress of SBMT on Brain, Spinal Cord Mapping and Image Guide Therapy on June 2-4 in Toronto.

Currently, aneurisms are treated either by performing brain surgery, opening the skull and clipping the sac, or by inserting a catheter through an artery into the brain and implanting a metallic coil into the balloon-like sac.

Both procedures risk major complications, including massive bleeding or the formation of potentially fatal blood clots.

"The survival rate is about 50/50 or worse, and those who do survive could be impaired," said Allain, who holds a courtesy appointment with materials engineering and is affiliated with the Birck Nanotechnology Center in Purdue's Discovery Park.

Cells needed to repair blood vessels are influenced by both the surface texture - features such as bumps and irregular shapes as tiny as 10 nanometers wide - as well as the surface chemistry of the stent materials.

"We are learning how to regulate cell proliferation and growth by tailoring both the function of surface chemistry and topology," Allain said. "There is correlation between surface chemistry and how cells send signals back and forth for proliferation. So the surface needs to be tailored to promote regenerative healing."

The facility being used to irradiate the stents - the Radiation Surface Science and Engineering Laboratory in Purdue's School of Nuclear Engineering - also is used for work aimed at developing linings for experimental nuclear fusion reactors for power generation.

Irradiating materials with the ion beams causes surface features to "self-organize" and also influences the surface chemistry, Allain said.

The stents are made of nonmagnetic materials, such as stainless steel and an alloy of nickel and titanium. Only a certain part of the stents is rendered magnetic to precisely direct the proliferation of cells to repair a blood vessel where it begins bulging to form the aneurism.

Researchers will study the stents using blood from pigs during the first phase in collaboration with the Walter Reed National Military Medical Center.

The stent coating's surface is "functionalized" so that it interacts properly with the blood-vessel tissue. Some of the cells are magnetic naturally, and "magnetic nanoparticles" would be injected into the bloodstream to speed tissue regeneration. Researchers also are aiming to engineer the stents so that they show up in medical imaging to reveal how the coatings hold up in the bloodstream.

The research is led by Allain and co-principal investigator Lisa Reece of the Birck Nanotechnology Center. This effort has spawned new collaborations with researchers around the world including those at Universidad de Antioqua, University of Queensland. The research also involves doctoral students Ravi Kempaiah and Emily Walker.


'/>"/>

Contact: Emil Venere
venere@purdjue.edu
765-494-4709
Purdue University
Source:Eurekalert  

Related biology news :

1. Climate change may create price volatility in the corn market, say Stanford and Purdue researchers
2. Purdue researchers reveal role of protein mutation in Parkinsons disease
3. Purdue scientists reveal how bacteria build homes inside healthy cells
4. Purdue technology used in first fluorescence-guided ovarian cancer surgery
5. Purdue biologists identify new strategy used by bacteria during infection
6. Purdue-led team studies Earths recovery from prehistoric global warming
7. Purdue startup hopes to change the way we test cancer drugs
8. Purdue team creates engineered organ model for breast cancer research
9. NASA, Purdue study offers recipe for global warming-free industrial materials
10. Protein can help cells or cause cancer, Purdue researcher finds
11. Purdue study finds dairy better for bones than calcium carbonate
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Purdue professor to speak before Congress about nanotechnology in brain treatment research
(Date:3/10/2016)... --  Unisys Corporation (NYSE: UIS ) today announced ... testing its biometric identity solution at the Otay Mesa border ... identify certain non-U.S. citizens leaving the country. ... determine the efficiency and accuracy of using biometric technologies in ... until May 2016. --> the United States ...
(Date:3/3/2016)... , March 3, 2016  FlexTech, a SEMI Strategic ... of Innovation, Research & Development, Leadership in Education, and, ... is the 9 th year of the FLEXI ... companies and individuals from past years . Judging ... a pre-described set of criteria, by a panel of ...
(Date:3/1/2016)... , March 1, 2016 /PRNewswire/ ... announced the addition of the  "Global ...  report to their offering. ... the addition of the  "Global Biometric ...  report to their offering. --> ...
Breaking Biology News(10 mins):
(Date:4/27/2016)... ReportsnReports.com adds 2016 global ... on US, EU, China ... healthcare business intelligence collection of its growing online ... on the Flow Cytometry market spread across 153 ... tables and figures is now available at ...
(Date:4/26/2016)... ... April 26, 2016 , ... BaseHealth , ... joined the company as Chief Business Officer. Arianpour, a genomics pioneer and visionary ... market, was most recently Chief Commercial Officer of Pathway Genomics. He has held ...
(Date:4/26/2016)... ... 26, 2016 , ... Heidelberg Instruments, a leader in design, ... its Volume Pattern Generator (VPG) line of lithography systems. The breakthrough VPG+ system ... as a solution for mid volume direct write lithography applications. It utilizes ...
(Date:4/26/2016)... ... April 26, 2016 , ... This unique "Fertility Happy Hour" event will ... an opportunity to get the lowdown on female fertility and the reproductive technologies that ... Jesse Hade, of Boston IVF - The Arizona Center, will give a short presentation ...
Breaking Biology Technology: