Navigation Links
Prototype terahertz imager promises biochem advances

Researchers at the National Institute of Standards and Technology (NIST) have demonstrated a new imaging system that detects naturally occurring terahertz radiation with unprecedented sensitivity and resolution. The technology may become a new tool chemical and biochemical analyses ranging from early tumor detection to rapid and precise identification of chemical hazards for homeland security instruments.

Terahertz radiation falls between microwaves and infrared radiation on the electromagnetic spectrum, with frequencies from about 300 million cycles per second to about 3 trillion cycles per second. Biological and chemical samples naturally emit characteristic signatures of terahertz radiation, but detecting and measuring them is a unique challenge because the signals are weak and absorbed rapidly by the atmosphere. The NIST prototype imager, described in detail for the first time in a new paper,* uses an exquisitely sensitive superconducting detector combined with microelectronics and optics technologies to operate in the terahertz range. The NIST system has its best resolution centered around a frequency of 850 gigahertz, a transmission window where terahertz signals can pass through the atmosphere. The system can detect temperature differences smaller than half a degree Celsius, which helps to differentiate between, for example, tumors and healthy tissue.

The heart of the system is a tiny device that measures incoming terahertz radiation by mixing it with a stable internal terahertz signal. This mixing occurs in a thin-film superconductor, which changes temperature upon the arrival of even a minute amount of radiation energy. The slight frequency difference between the two original terahertz signals produces a more easily detected microwave frequency signal.

NIST developed the device and antenna, combined with an amplifier on a chip smaller than a penny, in collaboration with the University of Massachusetts. Called a hot electon bolometer (HEB), the technology is sensitive enough to detect the weak terahertz signals naturally emitted by samples, eliminating the need to generate terahertz radiation to actively illuminate the samples. This greatly reduces complexity and minimizes safety concerns. In addition, the NIST mixer system delivers more information by detecting both the magnitude and phase (the point where each individual wave begins) of the radiation.

Because passively emitted signals are so weak, the current system takes about 20 minutes to make a single 40 x 40 pixel image. NIST researchers are working on an improved version that will scan faster and operate at two frequencies at once. Future systems also should be able to achieve better spatial resolution.


Contact: Laura Ost
National Institute of Standards and Technology (NIST)

Related biology news :

1. Innovative civil engineering application promises cleaner waters
2. New CPR promises better results by compressing abdomen, not Chest
3. Penn biochemist receives NIH New Innovators Award
4. Biochemists reveal details of mysterious bacterial microcompartments
5. Restoring sight, advances in fertility treatments and better visibility for pilots at FIO
6. Cardiologists and heart surgeons meet for Controversies and Advances conference
7. Lockheed Martin Advances Biometrics Portfolio Through Cooperation Agreement With Cognitec
8. Genetic Engineering & Biotechnology News reports on advances in miRNA
Post Your Comments:
Related Image:
Prototype terahertz imager promises biochem advances
(Date:4/17/2017)... MELBOURNE, Florida , April 17, 2017 ... security technology company, announces the filing of its 2016 Annual Report ... Securities and Exchange Commission. ... Report on Form 10-K is available in the Investor Relations section ... well as on the SEC,s website at . ...
(Date:4/11/2017)... -- Research and Markets has announced the addition of ... offering. ... market to grow at a CAGR of 30.37% during the period ... has been prepared based on an in-depth market analysis with inputs ... growth prospects over the coming years. The report also includes a ...
(Date:4/5/2017)... , April 5, 2017  The Allen Institute ... Allen Cell Explorer: a one-of-a-kind portal and dynamic digital ... 3D imaging data, the first application of deep learning ... human stem cell lines and a growing suite of ... platform for these and future publicly available resources created ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... ... October 10, 2017 , ... ... (ADC) therapeutics, today confirmed licensing rights that give it exclusive global access ... developed in collaboration with Children’s Hospital Los Angeles (CHLA). Additionally, an ...
(Date:10/10/2017)... , Oct. 10, 2017 SomaGenics announced the ... NIH to develop RealSeq®-SC (Single Cell), expected to be ... small RNAs (including microRNAs) from single cells using NGS ... the need to accelerate development of approaches to analyze ... "New techniques for measuring levels of mRNAs ...
(Date:10/9/2017)... ... ... The award-winning American Farmer television series will feature 3 Bar Biologics in ... 8:30aET on RFD-TV. , With global population estimates nearing ten billion people by ... feed a growing nation. At the same time, many of our valuable resources are ...
(Date:10/7/2017)... , ... October 06, 2017 ... ... experience providing advanced instruments and applications consulting for microscopy and surface analysis, ... in application consulting, Nanoscience Analytical offers a broad range of contract analysis ...
Breaking Biology Technology: