Navigation Links
Protein structure: Peering into the transit pore
Date:2/7/2014

The lipid-rich membranes of cells are largely impermeable to proteins, but evolution has provided a way through in the form of transmembrane tunnels. A new study shows in unmatched detail what happens as proteins pass through such a pore.

Every cell is surrounded by a surface membrane and contains internal compartments bounded by membranes. Almost one-third of all proteins synthesized in cells must pass through these membranes or be incorporated into them in order to fulfil their functions. However, the fat-rich nature of membranes makes it impossible for most proteins to percolate through them directly. Therefore, biological membranes contain so-called protein-conducting channels, molecular pores through which proteins can pass. "Structural investigations have already provided clues to how proteins are inserted into the membrane and then drawn through it like a length of thread to emerge on the other side," says Professor Roland Beckmann of the Gene Center of Ludwig-Maximilians-Universitaet (LMU) in Munich. "However, conclusive proof for these mechanisms has been lacking until now."

Protein-conducting channels are known to be shaped like an hour-glass, consisting of two cones connected by a narrow central constriction. In the inactive form, the constriction is blocked by a plug that protrudes from the side-wall. Presumably, if a protein is to cross the membrane, the channel must be opened to provide a continuous aqueous environment for its passage. If, on the other hand, a protein is to be inserted within the membrane itself, it must emerge from a lateral opening within the tunnel.

Imaging the crucial transition

"Up until now, it had not been possible to characterize these structural transitions with the required spatial and temporal resolution," Beckmann says. Now he and his colleagues have, for the first time, succeeded in isolating transitional forms of the active channel, and elucidating their three-dimensional structures with the help of cryo-electron microscopy at the unprecedented resolution of less than 1 nanometer. "This allowed us to determine the spatial conformations of the individual protein strands that make up the channel and to analyze how the channel behaves during its functional cycle," he explains.

Indeed, the researchers were even able to capture a snapshot of the complex at the moment when a protein leaves the channel to be incorporated into the cell membrane. "It turns out that there actually is a side-door within the channel, which opens to allow the protein to diffuse into the membrane," Beckmann says. Interestingly, as the lateral gate opens and the protein exits the channel into the membrane, the plug moves into the central constriction, blocking access to the outside and preventing diffusion of ions through the now empty channel. Surprisingly, proteins destined to cross the membrane do so without altering the position of the plug very much. Instead, an adjacent strand shifts slightly outward, widening the constriction sufficiently to let the protein through the length of the tunnel.

Beckmann and his team now hope to be able to increase the resolution of their snapshots still further. "Our goal is to achieve a resolution of less than 0.4 nm, in order to discern the interactions in molecular detail and understand the dynamic changes that take place in the structure of the channel," he says. In addition, the scientists want to image other membrane protein complexes such as visual pigments and analyze how a single chain of amino acids can function as a dynamically active membrane receptor.


'/>"/>

Contact: Luise Dirscherl
dirscherl@lmu.de
49-892-180-2706
Ludwig-Maximilians-Universitt Mnchen
Source:Eurekalert

Related biology news :

1. Protein synthesis and chance
2. Designer proteins provide new information about the bodys signal processes
3. The Protein Society announces the selection of 2 Protein Science Best Paper speakers
4. Researchers tune in to protein pairs
5. FASEB announces 2014 Science Research Conference: Protein Folding in the Cell
6. FASEB announces 2014 SRC: Protein Phosphorylation, Cellular Plasticity & Signaling Rewiring
7. FASEB announces 2014 SRC: Protein Interactions, Structures, Technologies & Networks
8. High-protein diets, like the Dukan diet, increase the risk of developing kidney disease
9. Overexpression of splicing protein in skin repair causes early changes seen in skin cancer
10. Next-gen reappraisal of interactions within a cancer-associated protein complex
11. Researchers pursuing arthritis protein
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/9/2016)... 9, 2016 Elevay is currently ... expanding freedom for high net worth professionals seeking travel ... globally connected world, there is still no substitute for ... duplicate sealing your deal with a firm handshake. This ... taking advantage of citizenship via investment programs like those ...
(Date:4/28/2016)... and BANGALORE, India , April 28, ... Systems, a product subsidiary of Infosys (NYSE: INFY ... announced a global partnership that will provide end ... use mobile banking and payment services.      (Logo: ... key innovation area for financial services, but it also plays ...
(Date:4/26/2016)... and LONDON , ... Finacle, part of EdgeVerve Systems, a product subsidiary ... Onegini today announced a partnership to integrate the ...      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ) ... provide their customers enhanced security to access and ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 2016  Global demand for enzymes is forecast ... to $7.2 billion.  This market includes enzymes used ... biofuel production, animal feed, and other markets) and ... Food and beverages will remain the largest market ... of products containing enzymes in developing regions.  These ...
(Date:6/27/2016)... ... June 27, 2016 , ... Newly ... technologies, services and solutions to the healthcare market. The company's primary focus is ... manufacturing, sales and marketing strategies that are necessary to help companies efficiently bring ...
(Date:6/24/2016)... , June 24, 2016 Epic ... sensitively detects cancers susceptible to PARP inhibitors by ... tumor cells (CTCs). The new test has already ... therapeutics in multiple cancer types. Over ... DNA damage response pathways, including PARP, ATM, ATR, ...
(Date:6/23/2016)... , June 23, 2016   Boston ... of novel compounds designed to target cancer stemness ... has been granted Orphan Drug Designation from the ... treatment of gastric cancer, including gastroesophageal junction (GEJ) ... inhibitor designed to inhibit cancer stemness pathways by ...
Breaking Biology Technology: