Navigation Links
Protein structure: Immune system foiled by a hairpin
Date:1/22/2013

The innate immune system detects invasive pathogens and activates defense mechanisms to eliminate them. Pathogens, however, employ a variety of tricks to block this process. A new study led by Karl-Peter Hopfner of Ludwig-Maximilians-Universitaet (LMU) in Munich shows how the measles virus thwarts the system, by means of a simple hairpin-like structure.

The innate immune system is the body's first line of defense against invasive pathogens and noxious chemicals. Essentially the system consists of an array of receptors that recognize particular molecular conformations which are characteristic of pathogenic organisms and viruses. Among the classes of molecules bound by these receptors are viral nucleic acids, which are bound specifically by so-called RIG-I-like receptors in the cytoplasm of infected cells. One of these is MDA5, which polymerizes into filaments on long double-stranded RNAs that indicate the presence of RNA viruses. RIG-I itself binds to shorter terminal segments of viral RNAs.

However, viruses have come up with a plethora of ways to avoid triggering immune defense measures. "The virus that causes measles, for instance, produces a so-called V protein, which binds specifically to MDA5 and one other RIG-I-like receptor, and thus impairs recognition of virus-infected cells by the adaptive immune system, although it does not inhibit RIG-I itself," says Professor Karl-Peter Hopfner of LMU's Gene Center. Indeed this kind of competition between viral and cellular proteins largely determines the distribution and - above all - the virulence of viral pathogens.

A hairpin opens up the receptor

"We have been able to crystallize the complex formed by the V protein and MDA5 for the first time, and have determined its three-dimensional structure in detail," Hopfner reports. This structure also permitted Hopfner's team, in collaboration with LMU virologist Professor Karl-Klaus Conzelmann, to clarify the mode of action of the V protein. The analysis revealed that it inserts a hairpin loop into the core secondary structure of MDA5, unfolding the protein and allowing V to bind to a segment that is normally buried in the interior of the molecule. This in turn prevents MDA5 from forming filaments and signaling the presence of viral RNA.

This finding was completely unexpected, and explains why MDA5, but not RIG-I, is inhibited by the V protein: This internal sequence is different in RIG-I and this is the reason why RIG-I is not targeted by the viral product. "Our work provides a detailed insight into the mechanisms viral proteins use to inhibit host protein function. It may also open opportunities for new therapeutic interventions," Hopfner concludes.


'/>"/>
Contact: Luise Dirscherl
dirscherl@lmu.de
49-892-180-2706
Ludwig-Maximilians-Universitt Mnchen
Source:Eurekalert

Related biology news :

1. How the protein transport machinery in the chloroplasts of higher plants developed
2. Scientists discover structure of protein essential for quality control, nerve function
3. Protein production: Going viral
4. New study defines the long-sought structure of a protein necessary for cell-cell interaction
5. NYU biologists identify proteins vital to chromosome segregation
6. Removing protein garbage in nerve cells may help control 2 neurodegenerative diseases
7. Protein creates paths for growing nerve cells
8. Cholesterol helps regulate key signaling proteins in the cell
9. Cats are able to navigate complex combinations of wet and dry foods to achieve a consistent intake of protein, fat and carbohydrate
10. Researchers identify proteins that indicate which kidney tumors are most likely to spread
11. Protein injection points to muscular dystrophy treatment
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/19/2016)... TORONTO , 19 de diciembre de 2016  Mosaic Biomedicals ... el desarrollo acelerado de MSC-1, un anticuerpo humanizado que se espera ... en 2017, con múltiples sitios previstos a lo largo de Europa ... MSC-1 ... factor inhibidor de leucemia (LIF), una citoquina pleiotrópica que se sobreexpresa ...
(Date:12/15/2016)... FREMONT, Calif. , Dec. 15, 2016   ... a publicly held genomics technology company, announced today that ... the Listing Qualifications Department of The Nasdaq Stock Market ... the closing bid price of WaferGen,s common stock had ... days.  Accordingly, WaferGen has regained compliance with Listing Rule ...
(Date:12/12/2016)... Dec. 12, 2016  Researchers at Trinity College, ... graphene by combining the material with Silly Putty. The ... pressure detector able to sense pulse, blood pressure, ... spider.  The research team,s findings ... read here:  http://science.sciencemag.org/content/354/6317/1257 ...
Breaking Biology News(10 mins):
(Date:1/23/2017)... (PRWEB) , ... January 23, 2017 , ... ... replacement at the Caribbean Neurosciences Symposium (CANS) annual meeting in Montego Bay, Jamaica ... technology and host a hands-on workshop for surgeons to experience the simplicity of ...
(Date:1/21/2017)... , ... January 21, 2017 , ... ... endeavors to bring to market a pioneering medical device for the treatment of ... an engagement contract with Emergo, a global regulatory consultancy that helps companies like ...
(Date:1/21/2017)... 2017   Boston Biomedical , an industry leader ... cancer stemness pathways, today presented data from two clinical ... 2017 American Society of Clinical Oncology (ASCO) Gastrointestinal Cancers ... In a Phase Ib/II study of napabucasin ... cancer stemness pathways by targeting STAT3 – colorectal cancer ...
(Date:1/20/2017)... NEW YORK , January 20, 2017 ... Health Organization, cancer is one of leading causes of ... in 2012. Although the number of cancer related deaths ... since 1990. Rising in incidence rate of various cancers ... According to a research report by Global Market Insights, ...
Breaking Biology Technology: