Navigation Links
Protein power for Jack and the beanstalk
Date:5/17/2010

Plant geneticists are on a determined quest to control auxin, a powerful plant growth hormone. Auxin tells plants how to grow, where to lay down roots, how to make tissues, and how to respond to light and gravity. Knowing how to manipulate auxin could thus have enormous implications for the production of biofuel, making plants grow faster and better.

A recent publication in the journal PLoS Biology from the laboratory of Prof. Shaul Yalovsky of Tel Aviv University's Molecular Biology and Ecology of Plants Department describes a special protein, the ICR1, found to control the way auxin moves throughout a plant affecting its development. When this protein is genetically engineered into valuable biofuel crops such as corn, sugarcane or experimentals like switchgrass, farmers can expect to get a far larger yield than what they harvest today, Prof. Yalovsky has found.

In short, much more biofuel for the buck.

"We've found a mechanism that helps the shoot and root talk to each other," says Prof. Yalovsky. "Somehow both parts of the plant need to speak to each other to say: 'Hey down there, I'm up here and there's lots of sun,' or 'I'm down here in the roots and it's too dry.' The plant's shoots need to respond to its environment. We've discovered the mechanism that helps auxin do its job."

Putting energy into sugar

Auxin is considered the most important plant hormone for plant growth and root growth. Prof. Yalovsky explains that knowing how to manipulate it can lead to much bigger yields of non-food crops, like those needed for biofuel. Efficiency is now a limiting factor in biofuel production, and scientists are looking for anything that can produce biofuel in the same amounts as the production of traditional fossil-based fuels.

The ICR1 protein that Prof. Yalovsky has isolated works together with a group of proteins called ROPs, which his lab also isolated in previous research. Together, this system of work in harmony to manipulate the composition and vascular tissues of plant cell walls. The researchers found specifically that ICR1 can be manipulated and, as a consequence, influence auxin distribution in plants. Plant scientists now have a tool that allows breeders to grow certain plant organs of choice, with the possibility of manipulating plant cell wall composition the kinds of tissues needed in making biofuel.

In the PLoS Biology report published recently, the researchers spell out the links between the mechanisms that regulate cell structure and the development of the whole plant. The ICR1, they explain, influences the way the hormone auxin moves around the plant.

Breaking down the walls

Plant tissue is made of cells engulfed in a tough cell wall that helps it retain shape and rigidity. It's composed of cellulose, a polysaccharide, and lignin, which is the woody material in a plant. Current methods for removing the unwanted lignin in the cell wall ― which must be removed to produce biofuel ― amounts to about a 50% loss cellulosic material which could be used for biofuel.

Ideally crop growers want to maximize the amount of cellulose in the plant, which can be broken down to make sugar for ethanol. The new system found in proteins and developed at Tel Aviv University has the potential to increase crop yield and make fuel production more cost-effective. His approach could mean less lignin, more cellulose and ultimately more biofuel, says Prof. Yalovsky.


'/>"/>

Contact: George Hunka
ghunka@aftau.org
212-742-9070
American Friends of Tel Aviv University
Source:Eurekalert

Related biology news :

1. Study finds protein that plays key role in early embryonic development
2. Jefferson scientists identify a new protein involved in longevity
3. Dietary protein may reduce hip fractures in the elderly
4. Glaucomas unique protein expression could enhance diagnosis and treatment
5. AAPS presents therapeutic protein drug interactions workshop
6. Synthetic enzymes could help ID proteins
7. New data on the regulation of a protein that is altered in all cancers
8. Research pinpoints action of protein linked to key molecular switch
9. Hopkins researchers put proteins right where they want them
10. Key protein aids in DNA repair
11. Significant findings about protein architecture may aid in drug design, generation of nanomaterials
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/27/2017)... 27, 2017  Catholic Health Services (CHS) has ... Society (HIMSS) Analytics for achieving Stage 6 on ... . In addition, CHS previously earned a place ... an electronic medical record (EMR). "HIMSS ... of EMR usage in an outpatient setting.  This ...
(Date:3/23/2017)... PUNE, India , March 23, 2017 The report ... Equipment, Touchless Biometric), Industry, and Geography - Global Forecast to 2022", published by ... growing at a CAGR of 29.63% between 2017 and 2022. ... ... Logo ...
(Date:3/22/2017)... YORK , March 21, 2017 ... Marketing Cloud used by retailers such as 1-800-Flowers ... its platform — Product Recommendations and Replenishment. Using Optimove,s ... give more personalized product and replenishment recommendations to ... but also on predictions of customer intent drawn ...
Breaking Biology News(10 mins):
(Date:9/20/2017)... New Haven, CT (PRWEB) , ... September 20, ... ... therapeutics company, announced today that it has appointed Vishwas Paralkar to the role ... of Cybrexa’s tumor targeting technology. He will report to Cybrexa’s president and CEO, ...
(Date:9/20/2017)... Baltimore, MD (PRWEB) , ... September 20, 2017 ... ... for digital pathology, and Huron Digital Pathology , a provider of whole ... Association’s 2017 Pathology Visions conference . The workshop, entitled “Successfully Deploying a Best-in-Class ...
(Date:9/20/2017)... ... September 20, 2017 , ... Foresight Institute, ... and other transformative technologies, announced the winners for the 2017 Foresight Institute Feynman ... Theory in nanotechnology/molecular manufacturing. , Established in 1993 and named in honor of ...
(Date:9/19/2017)... (PRWEB) , ... September 19, 2017 , ... ... a standard fume hood and a high-performance fume hood. Along with the advantages ... and applications for ductless vs. ducted hoods in the laboratory. , Attendees will ...
Breaking Biology Technology: