Navigation Links
Protein linked to mental retardation controls synapse maturation, plasticity, CSHL team finds

Cold Spring Harbor, NY -- A team of neuroscientists at Cold Spring Harbor Laboratory (CSHL) has demonstrated the mechanism by which a signaling protein found throughout the brain controls the maturation and strength of excitatory synapses, the tiny gaps across which the majority of neurons communicate.

The discovery is important, in part, because deficits of the signaling protein in question, called oligophrenin-1 (OPHN1), have been previously linked with X-linked mental retardation. Indeed, problems at the synapse -- in their formation and in the mechanisms through which the strength, or plasticity, of their connections are regulated -- are thought to contribute to numerous mental and neurological disorders.

"Great progress has been made in recent years in the identification of chromosomal abnormalities and genetic changes involved in mental retardation (MR)," says Professor Linda Van Aelst, Ph.D., who led the CSHL research team. "We know of at least 280 genes that are implicated, in fact. But what we have not done, to date, is connect the genetic abnormalities associated with MR to biological processes that establish and modify the function of neuronal circuits."

That has been a major objective of studies in Van Aelst's lab, where previous experiments have shown that "knocking-down" expression of the gene that encodes the production of the OPHN1 protein (the gene is designated by the italic OPHN1) causes a potentially important change in neuronal structure. Small knob-like features, called dendritic spines, that protrude from a neuron's branch-like dendrites, typically receive signals across synapses from the axons of other neurons. Those spines were found to be abnormally short and misshapen when expression of the OPHN1 gene was acutely reduced.

A signaling protein's key functions at the synapse

In a new series of experiments, Van Aelst and colleagues set out to discover what would happen on the receiving, or post-synaptic side of the gap, when the function of the oligophrenin protein was disturbed under carefully controlled conditions. Using samples taken from the rat hippocampus -- a well-studied brain region known to be important in learning and memory -- the team confirmed that the signaling protein is not essential for the formation of dendritic spines, but that it is needed for the proper maintenance of their structure. Importantly, in this maintenance function, the OPHN1 protein was found to play a key role in both the maturation of excitatory synapses and in their plasticity, or ability to vary in strength.

Two things are particularly intriguing about the team's results, reported in the June 1 issue of the journal Genes & Development.. They have been able to show, for the first time, how OPHN1 performs these roles at excitatory synapses. They have also made important progress in elucidating the pathophysiology of mutations in the OPHN1 gene.

The protein normally encoded by the OPHN1 gene belongs to what scientists call the Rho subfamily of GTP-binding proteins. "Members of this family are known to be key regulators of the actin cytoskeleton and affect many aspects of neuronal development," Van Aelst notes. The actin cytoskeleton is the gossamer, filament-like scaffolding that provides structure for the contents of cells. "All mutations that we know of in the OPHN1 gene lead to OPHN1 proteins that do not function," Van Aelst says. "This naturally raised the question of what the protein's normal function is at excitatory synapses, and what goes wrong when the gene that encodes it develops a mutation."

By manipulating OPHN1 gene expression on the postsynaptic side of the gap, the team was able to unravel a key link between OPHN1 function and synaptic activity. They showed that neuronal activity, which triggers the activation of post-synaptic cellular receptors, called NMDA receptors, is needed for the function of OPHN1 at the synapse, and that in turn, OPHN1 regulates the plasticity, or strength of the connection.

When NMDA receptors are activated in the synapse, the team found that OPHN1 is recruited to dendritic spines, where it locally regulates the actin cytoskeleton -- as it turns out, in proximity to another receptor type in the synapse called AMPA receptors. This finding proved critical in the team's progress in understanding what goes wrong when the OPHN1 gene malfunctions.

Destabilizing AMPA receptors

"If you lose the OPHN1 protein," says Van Aelst, "for example, if you have a mutation in the OPHN1 gene, then the protein becomes non-functional. This, in turn, perturbs the stabilization of the AMPA receptors. And that, we propose, accounts for depressed function of glutamatergic, or excitatory neurons." Below-normal glutamatergic function, specifically observed in these experiments in the rat hippocampus, can in this way be associated with certain pathologies.

There is no question, Van Aelst clarifies, that "defective OPHN1 signaling results in destabilization of synaptic AMPA receptors and dendritic spine structure, leading to impairment in synaptic plasticity and eventually loss of spines and NMDA receptors." This chain of events has been observed definitively in rats.

The impact of OPHN1 signaling anomalies in people, however, is still hypothetical. "Our work suggests a cellular mechanism by which mutations in OPHN1 can contribute to cognitive deficits observed in patients who have the mutations," Van Aelst says.

Future work in Van Aelst's lab will focus on OPHN1's potential role in pathologies in other neuronal pathways, between or within other parts of the brain. The protein is found nearly everywhere, but it is not known if its absence or loss of function causes abnormalities in other parts of the brain.


Contact: Peter Tarr
Cold Spring Harbor Laboratory

Related biology news :

1. Protein chatter linked to cancer activation
2. Scientists link fragile X tremor/ataxia syndrome to binding protein in RNA
3. Researchers identify proteins involved in new neurodegenerative syndrome
4. Low levels of key protein may indicate pancreatic cancer risk
5. Structure of 450 million year old protein reveals evolutions steps
6. Scientists retrace evolution with first atomic structure of an ancient protein
7. Specific brain protein required for nerve cell connections to form and function
8. NIH awards researcher $1.5 million new innovator grant for fruit-fly studies of prion proteins
9. Interacting protein theory awaits test from new neutron analysis tools
10. Depression, aging, and proteins made by a virus may all play role in heart disease
11. Census of protein architectures offers new view of history of life
Post Your Comments:
(Date:11/17/2015)... Mass. , Nov. 17, 2015 Pressure ... leader in the development and sale of broadly enabling, ... worldwide life sciences industry, today announced it has received ... its $5 million Private Placement (the "Offering"), increasing the ... $4,025,000.  One or more additional closings are expected in ...
(Date:11/11/2015)... 11, 2015   MedNet Solutions , an innovative SaaS-based ... research, is pleased to announce that it will be a ... event, to be held November 17-19 in ... live demonstrations of iMedNet , MedNet,s easy-to-use, ... iMedNet has been able to deliver time and cost ...
(Date:11/4/2015)... , November 4, 2015 ... new market report published by Transparency Market Research "Home Security ... Trends and Forecast 2015 - 2022", the global home security ... 30.3 bn by 2022. The market is estimated to ... period from 2015 to 2022. Rising security needs among ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... LUMPUR, Malaysia , Nov. 24, 2015 /PRNewswire/ ... global contract research organisation (CRO) market. The trend ... result in lower margins but higher volume share ... increased capacity and scale, however, margins in the ... Research Organisation (CRO) Market ( ), ...
(Date:11/24/2015)... 2015 /CNW/ - iCo Therapeutics ("iCo" or "the Company") ... for the quarter ended September 30, 2015. Amounts, ... and presented under International Financial Reporting Standards ("IFRS"). ... said Andrew Rae , President & CEO ... not only value enriching for this clinical program, ...
(Date:11/24/2015)... 2015  Clintrax Global, Inc., a worldwide provider of clinical research ... announced that the company has set a new quarterly earnings record ... quarter growth posted for Q3 of 2014 to Q3 of 2015. ... Mexico , with the establishment of an Asia-Pacific ... United Kingdom and Mexico ...
(Date:11/24/2015)... Massachusetts , November 24, 2015 SHPG ... will participate in the Piper Jaffray 27 th Annual Healthcare ... Tuesday, December 1, 2015, at 8:30 a.m. EST (1:30 p.m. GMT). ... , Chief Financial Officer, will participate in the Piper Jaffray 27 ... , NY on Tuesday, December 1, 2015, at 8:30 a.m. ...
Breaking Biology Technology: