Navigation Links
Protein 'filmed' while unfolding at atomic resolution
Date:2/11/2013

By combining low temperatures and NMR spectroscopy, the scientists visualized seven intermediate forms of the CylR2 protein while cooling it down from 25C to -16C. Their results show that the most instable intermediate form plays a key role in protein folding. The scientists' findings may contribute to a better understanding of how proteins adopt their structure and misfold during illness.

Whether Alzheimer's, Parkinson's or Huntington's Chorea all three diseases have one thing in common. They are caused by misfolded proteins that form insoluble clumps in the brains of affected patients and, finally, destroy their nerve cells. One of the most important questions in the biological sciences and medicine is thus: How do proteins the tools of living cells achieve or lose their three-dimensional structure. Because only if their amino acid chains are correctly folded, can proteins perform their tasks properly.

But what exactly happens when proteins fold or unfold was previously nearly impossible to investigate. With heat and pressure, proteins easily lose their shape and thus their function. However, such methods are not suitable for directly observing their unfolding process. The intermediate forms that occur in the course of protein folding are much too transient.

With a novel approach, researchers have now succeeded in "filming" the complex process of protein folding for the first time. Scientists at the Max Planck Institute for Biophysical Chemistry (MPIbpc) and the German Center for Neurodegenerative Diseases (DZNE) in Gttingen, together with their colleagues at the Polish Academy of Sciences in Warsaw and at the University of Warsaw, have rendered visible at atomic resolution how a protein progressively "loses its shape". In doing so, the researchers had pinned their hopes on low temperatures. "If a protein is slowly cooled down, its intermediate forms accumulate in larger quantities than in commonly used denaturation methods, such as heat, pressure, or urea. We hoped that these quantities would be sufficient to examine the intermediate forms with nuclear magnetic resonance (NMR) spectroscopy," said Markus Zweckstetter, head of the research groups "Protein Structure Determination using MNR" at the MPIbpc and "Structural Biology in Dementia" at the DZNE in Gttingen.

How a protein loses its shape

As research object, Zweckstetter's team chose a key protein for toxin production in Enterococcus faecalis, a pathogen frequently encountered in hospitals where it particularly infects patients with a weak immune system. But that is not the only reason why the so-called CylR2 protein is interesting. Some time ago, researchers working with Stefan Becker at the MPIbpc succeeded in elucidating its structure, which shows: Its three-dimensional shape makes CylR2 a particular promising candidate for the scientists' approach. "ClyR2 is a relatively small protein composed of two identical subunits. This gave us a great chance to be able to visualize the individual stages of its unfolding process in the test tube," explained the chemists Mariusz and Lukasz Jaremko.

Stefan Becker's group undertook the first step: to prepare a sufficient quantity of the protein in the laboratory. Subsequently, the two chemists cooled the protein successively from 25C to -16C and examined its intermediate forms with NMR spectroscopy. They achieved what they had hoped for: Their "film clip" shows at atomic resolution how the protein gradually unfolds. The structural biologist Markus Zweckstetter describes exactly what happens in this process: "We clearly see how the CylR2 protein ultimately splits into its two subunits. The individual subunit is initially relatively stable. With further cooling, the protein continues to unfold and at -16 C it is extremely instable and dynamic. This instable protein form provides the seed for folding and can also be the "trigger" for misfolding." The scientist's findings may help to gain deeper insights into how proteins assume their spatial structure and why intermediate forms of certain proteins misfold in the event of illness. (cr)


'/>"/>
Contact: Dr. Dirk Frger
presse@dzne.de
0049-228-433-02260
Helmholtz Association of German Research Centres
Source:Eurekalert

Related biology news :

1. Key protein revealed as trigger for stem cell development
2. Compound stimulates tumor-fighting protein in cancer therapy
3. FASEB SRC announces conference registration open for: Arf and Rab Family G Proteins
4. FASEB SRC announces: Molecular Mechanisms & Physiological Consequences of Protein Aggregation
5. FASEB SRC announces conference: Matricellular Proteins in Development, Health, and Disease
6. Protein origami: Quick folders are the best
7. Pitt team finds Achilles Heel of key HIV replication protein
8. First special edition updating progress on efforts to map human proteins
9. Study: Odd biochemistry yields lethal bacterial protein
10. Protein structure: Immune system foiled by a hairpin
11. How the protein transport machinery in the chloroplasts of higher plants developed
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/18/2016)... 18, 2016 --> ... ICT, Manned & Unmanned Vehicles, Physical infrastructure and Perimeter Surveillance ... in the border security market and the continuing migration crisis ... Europe has led visiongain to publish this ... --> defence & security companies in the ...
(Date:3/15/2016)... -- --> --> According ... "Digital Door Lock Systems Market - Global Industry Analysis, Size, ... digital door lock systems market in terms of revenue was ... to grow at a CAGR of 31.8% during the period ... (MSMEs) across the world and high industrial activity driving inclusive ...
(Date:3/14/2016)... , March 14, 2016 NXTD ... growing mobile commerce market, announces the airing of a new ... starting the week of March 21 st .  The commercials ... including its popular Squawk on the Street show. --> ... on the growing mobile commerce market, announces the airing of ...
Breaking Biology News(10 mins):
(Date:5/4/2016)... ... ... Proove Biosciences, Inc. , the commercial and research leader in personalized pain ... partnership is designed to advance research in pain genetics in an effort to bring ... new agreement, researchers at Proove Biosciences are able to collaborate with Luda Diatechnko, MD, ...
(Date:5/4/2016)... ... May 04, 2016 , ... ... in biotechnology to help treat hormonal and stress related hair loss. With patent-pending ... the hearts of key opinion leaders in the medical and salon channels nationwide. ...
(Date:5/3/2016)... , ... May 03, 2016 , ... ... the addition of Dr. Nancy Gillett to its Board of Directors. Dr. Gillett ... served as Corporate Executive Vice President and Chief Scientific Officer. A board-certified veterinary ...
(Date:5/3/2016)... York, NY (PRWEB) , ... May 03, 2016 , ... ... Hill Hospital , for definitive prostate cancer treatment, patients traditionally had two main treatment ... appropriate treatment plan would be made. , New technology has enabled doctors to ...
Breaking Biology Technology: