Navigation Links
Protein evolution follows a modular principle

This news release is available in German.

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck Institute for Developmental Biology in Tbingen have now discovered that proteins can be constructed of similar amino acid chains even when their three-dimensional shapes differ significantly. This suggests that the proteins that exist today arose from common precursors. Presumably, in the course of evolution they were built up from smaller fragments according to a modular principle.

Proteins consist of long chains of 20 different amino acid building blocks that fold into a characteristic three-dimensional structure. It is noteworthy that some modules, known as protein domains, occur more frequently than others. Scientists suspect that many of these domains share a common evolutionary origin.

To test this theory, the Max Planck researchers focussed on two large, evolutionarily ancient protein groups that differ significantly in their folding pattern. While "flavodoxin-like" protein domains fold into a kind of sandwich shape, so-called (βα)8-barrel proteins stack two sandwich elements on top of each other to form a barrel-like structure. "In the folded state it's very difficult to recognize similarities between these two types," Jos Arcadio Faras Rico, first author of the study, explains. The Tbingen scientists therefore compared the amino acid chains of over a thousand representatives of both folding types in a computer analysis. They found that short, characteristic sequences of amino acids occur in both folding types.

In the next step, the team identified a third folding type whose amino acid sequence is an intermediate form between the other two types. To compare the amino acid sequences, the researchers used a highly sensitive method that enabled them to identify even the smallest shared features. "Analysis of the three-dimensional structure of the intermediate form by X-ray crystallography showed that the intermediate form has characteristics of both the barrel-like and the sandwich-like folding type," says Farias-Rico.

The similarity of the amino acid sequences and the existence of an intermediate form confirm a hypothesis proposed by Birte Hcker, head of the Protein Design Working Group at the Max Planck Institute for Developmental Biology, according to which the two folding types developed in the course of evolution from a common ancestor. "We assume that evolutionarily early proteins consisted of only short amino acid chains. Those fragments then joined together as in a construction kit to form new molecules with new functions," Hcker explains.

Hcker's team has thus provided fresh insights into the evolution of modern proteins and the origins of life on Earth. In addition, the Max Planck scientist is pursuing research in the field of synthetic biology and wants to apply this knowledge to construct variant proteins with new functions in the laboratory.


Contact: Nadja Winter

Related biology news :

1. High matrix metalloproteinase-9 expression induces microangiogenesis after cerebral infarction
2. Scientists map one of most important proteins in life -- and cancer
3. Measuring the number of protein molecules inside cells
4. National Xenopus resource at the MBL innovates new way to study proteins
5. Cell membrane proteins give up their secrets
6. Proteins hands enable bacteria to establish infection, research finds
7. SLU scientists hit delete: Removing regions of shape-shifting protein explains how blood clots
8. CNIO scientists develop technology to redirect proteins towards specific areas of the genome
9. Research reveals how key controller protein is switched on
10. Cellular defence against fatal associations between proteins and DNA
11. Work environment affects protein properties
Post Your Comments:
Related Image:
Protein evolution follows a modular principle
(Date:10/26/2015)... PUNE, India , October 26, ... --> --> ... Forecasts 2015 to 2021 as well ... Analysis 2015-2019 research reports to its ... . ...
(Date:10/26/2015)... 2015  Delta ID Inc., a company focused on ... PC devices, announced its ActiveIRIS® technology powers the iris ... launched by NTT DOCOMO, INC in Japan ... smartphone to include iris recognition technology, after a very ... in May 2015, world,s first smartphone to have this ...
(Date:10/23/2015)... and GOLETA, California , October 23, ... BIOPAC and SensoMotoric Instruments (SMI) announce a mobile plug ... data captured during interactive real-world tasks SensoMotoric ... integration of their established wearable solutions for eye tracking ... gaze behavior captured with SMI Eye Tracking Glasses ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... 2015 SHPG ) announced today that ... Jaffray 27 th Annual Healthcare Conference in New ... 8:30 a.m. EST (1:30 p.m. GMT). --> SHPG ) ... participate in the Piper Jaffray 27 th Annual Healthcare Conference ... December 1, 2015, at 8:30 a.m. EST (1:30 p.m. GMT). ...
(Date:11/24/2015)... 24, 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ: ... the remaining 11,000 post-share consolidation (or 1,100,000 pre-share ... "Series B Warrants") subject to the previously disclosed ... 23, 2015, which will result in the issuance ... to the issuance of such shares, there will ...
(Date:11/24/2015)... ... ... InSphero AG, the leading supplier of easy-to-use solutions for production, culture, and ... as Chief Operating Officer. , Having joined InSphero in November 2013 as ... promoted to Head of InSphero Diagnostics in 2014. There she has built up ...
(Date:11/24/2015)... 24, 2015 Capricor Therapeutics, Inc. ... the discovery, development and commercialization of first-in-class therapeutics, today ... Officer, is scheduled to present at the 2015 Piper ... a.m. EST, at The Lotte New York Palace Hotel ... . --> . ...
Breaking Biology Technology: