Navigation Links
Protein abundant in cancerous cells causes DNA 'supercoiling'
Date:3/11/2013

A team of USC scientists has identified a protein that can change DNA topology, making DNA twist up into a so-called "supercoil."

The finding provides new insight about the role of the proteinknown as mini-chromosome maintenance (MCM)in cancer cells, which have high levels of MCM.

Think about twisting one end of a rubber band while holding the other end still. After a few turns, it forms a neatly twisted rope. But if you keep on turning, the twisted band will twist back upon itself into an increasingly coiled-up knot. Similarly, a DNA molecule can be twisted and coiled to varying extents to form different "supercoiled" structures.

Chromosomal DNA forms different supercoiled structures to enable a number of important processes. It turns on or off some genes, while tuning up or down other genes. The study suggests that an overabundance of MCM in a cell may allow certain genes to be overexpressed, and tune down or turn off other important genes, causing the cell to grow out of control and become cancerous.

Chromosomal DNA structure is very important for regulating gene expression of a cell, and thus the physiological status of the cell. Changing DNA topology is one effective way of controlling chromosomal DNA structure. The discovery of MCM's ability to change DNA topology offers a totally new perspective to MCM's role in gene regulation and cancer," said Xiaojiang Chen, professor of molecular biology at the USC Dornsife College of Letters, Arts and Sciences, and corresponding author of the study.

Chen worked with fellow USC professor Susan Forsburg and USC graduate students Ian M. Slaymaker, Yang Fu and Nimna Ranatunga; as well as Daniel B. Toso and Z. Hong Zhou of UCLA and Aaron Brewster of UC Berkeley. Their study was published online by Nucleic Acids Research on Jan. 29.

Chen and his team found that MCM proteins form a filament that looks much like a wide tube, through which the DNA strand spirals its way along the inner tube wall. Inside of the tube is a wide spiral path that has a strong positive electrical charge.

"Such a striking feature is unusual," said Chen. Who is also a member of the USC Norris Cancer Center. "When you see that, you know it must have a special function." Indeed, it turns out that the positively charged spiral path attracts and binds to the DNA strand, which has a negatively charged phosphate backbone.

Holding the DNA tightly to the spiral path inside the helical filament tube causes the DNA double-helix to change structure, creating supercoils. Future research by the team will explore how the DNA topology changes caused by MCM impacts cancer cell formation as well as its utility in cancer therapy.


'/>"/>
Contact: Robert Perkins
perkinsr@usc.edu
213-740-9226
University of Southern California
Source:Eurekalert

Related biology news :

1. Selectively manipulating protein modifications
2. Specialised germanium surface as universal protein adapter
3. A cancer-promoting protein is found to also suppress cell growth
4. Age-related dementia may begin with neurons inability to dispose of unwanted proteins
5. Stressed proteins can cause blood clots for hours
6. Adding to the list of disease-causing proteins in brain disorders
7. Analytical trick accelerates protein studies
8. Antibacterial proteins molecular workings revealed
9. Nano-machines for bionic proteins
10. Bridges experimental and bioinformatics perspectives to delineate protein-DNA interactions
11. Discovering cell surface proteins behavior
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/15/2016)... 15, 2016 Research and Markets has announced ... 2021" report to their offering. ... ... by 2021 from USD 6.21 Billion in 2016, growing at a ... of the bioinformatics market is driven by the growing demand for ...
(Date:11/14/2016)... 14, 2016  Based on its recent ... & Sullivan recognizes FST Biometrics with the ... Visionary Innovation Leadership. FST Biometrics emerged as ... market by pioneering In Motion Identification (IMID) ... seamless, and non-invasive verification. This patented solution ...
(Date:6/22/2016)...  The American College of Medical Genetics and Genomics was ... as one of the fastest-growing trade shows during the Fastest ... in Las Vegas . ... in each of the following categories: net square feet of ... attendees. The 2015 ACMG Annual Meeting was ranked 23 out ...
Breaking Biology News(10 mins):
(Date:12/6/2016)... PA (PRWEB) , ... December ... ... part of the Almac Group, the world’s largest privately-held contract pharmaceutical development ... with inVentiv Health, a leading biopharma outsourcing company combining a leading CRO ...
(Date:12/6/2016)... ... ... Discovering new clues to natural treatments that could allow our bodies to ... And searching for keys to our immune systems by studying parasite-resistant fish. These are ... Edith and Peter O’Donnell Awards by The Academy of Medicine, Engineering and ...
(Date:12/6/2016)... ... December 06, 2016 , ... ... platforms, announced today that the company has engaged in a collaborative research partnership ... (MRDA) with the CSU Office of the Vice President for Research. This agreement ...
(Date:12/6/2016)... , December 6, 2016 According to a ... Microneedle), Material (Polymer, Glass, Silicon), Application (Genomics, Proteomics, Capillary Electrophoresis, POC, ... MarketsandMarkets, the global market is projected to reach USD 8.78 Billion ... of 19.2% during the forecast period (2016 to 2021). ... ...
Breaking Biology Technology: