Navigation Links
Prostate cancer and blood lipids share genetic links
Date:4/30/2014

Numerous studies have suggested a relationship between cardiovascular disease risk factors and prostate cancer. A new study by researchers at the University of California, San Diego School of Medicine, with colleagues in Norway, significantly refines the association, highlighting genetic risk factors associated with low density lipoprotein (LDL) cholesterol and triglycerides as key players and identifying 17 related gene loci that make risk contributions to levels of these blood lipids and to prostate cancer

The findings, published in the April 30, 2014 online issue of the International Journal of Epidemiology, provide new insights into the pathobiology of prostate cancer and may point to novel therapies to lower blood lipid levels that might help prevent prostate cancer the second most common cause of cancer death among American men.

The research team, headed by senior authors Anders M. Dale, PhD, professor in the departments of radiology, neurosciences and psychiatry at the UC San Diego School of Medicine, and Ole Andreassen, professor of psychiatry at Oslo University, applied a genetic epidemiology method to assess statistics from multiple genome-wide association studies, looking for genetic overlap between the phenotypes for prostate cancer and cardiovascular disease (CVD) risk factors. In the case of the latter, they specifically investigated triglycerides, LDL and high density lipoprotein cholesterol, systolic blood pressure, body mass index, waist-hip ratio and type 2 diabetes.

The researchers also examined enrichment of single nucleotide polymorphisms bits of DNA that vary among individuals associated with prostate cancer and CVD risk.

LDL cholesterol and triglycerides displayed a strong association with prostate cancer.

"It's fair to say that risk relationships of various sorts have been proposed between prostate cancer and cardiovascular disease, although not comorbidity per se," said co-author Ian G. Mills, PhD, of the University of Oslo and Oslo University Hospital in Norway. "There is a lack of consistency across cohorts, however, in size and direction of effects, depending on cardiovascular risk factor considered. The significant risk association with LDL cholesterol and triglycerides versus the other traits at a genetic level was novel and unexpected."

Mills said the identification of 17 pleiotropic loci specific sites in the genome which may affect the expression of a number of genes and influence a range of biological pathways, in this case affecting both prostate cancer and cardiovascular disease risk was a key finding. He said the loci provide clues to the common regulatory elements that affect expression of disease-related genes. They may be incorporated into future disease risk test panels. And they might, ultimately, help shape "genetically stratified dietary or chemoprevention studies repurposing clinically approved drugs that regulate blood lipid levels" to alter the risk of developing prostate cancer, he said.

The current findings were made possible through use of a novel analytical approach developed by researchers at UC San Diego and University of Oslo, which previously had been shown to increase the statistical power for gene discovery in other diseases, including hypertension, neurological diseases, psychiatric disorders and immune-mediated diseases.


'/>"/>

Contact: Scott LaFee
slafee@ucsd.edu
619-543-6163
University of California - San Diego
Source:Eurekalert

Related biology news :

1. Marshall University study may lead to new treatments for prostate cancer
2. Interventional radiology: Potential breakthrough to treat mens enlarged prostate
3. Tokai Pharmaceuticals galeterone well-tolerated in patients with advanced prostate cancer
4. Study shows botanical formula fights prostate cancer
5. New diagnostic tool determines aggressiveness of prostate cancer
6. Beehive extract shows potential as prostate cancer treatment
7. Scientists identify prostate cancer stem cells among low-PSA cells
8. UC Davis scientists find new role for P53 genetic mutation -- initiation of prostate cancer
9. New therapeutic target for prostate cancer identified
10. Epigenetic causes of prostate cancer
11. New study confirms erroneous link between XMRV and prostate cancer-contamination was the cause
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/22/2016)... 20, 2016  As part of its longstanding mission to ... genetics company, recently released its latest children,s book, titled ... focuses on the topics of inheritance and variation of traits ... taught in elementary school classrooms in the US. ... illustrator Ariana Killoran , whose previous book with 23andMe, ...
(Date:12/16/2016)... --  IdentyTechSolutions America LLC , a leading provider ... a cutting-edge manufacturer of software and hardware security ... integrated solutions that comprise IDT biometric readers and ... IdentyTech,s customers with combined physical identification and anti-tailgating ... theft. "We are proud to use ...
(Date:12/15/2016)... 2016 ... Research and Markets has announced the addition of the ... The report forecasts the global military biometrics market to grow at ... report has been prepared based on an in-depth market analysis with inputs ... prospects over the coming years. The report also includes a discussion of ...
Breaking Biology News(10 mins):
(Date:1/18/2017)... ... 18, 2017 , ... uBiome, the leading microbial genomics company, ... Editor, Dr. Elisabeth Bik, in the December 2016 issue of the Dutch Journal ... October 2016 from her previous position at Stanford University School of Medicine and ...
(Date:1/18/2017)...  HUYA Bioscience International, (HUYA), the leader in accelerating ... pharmaceutical innovations, announced today a strategic collaboration agreement with ... (referred to as CAS Innovation). The collaboration will focus ... scientists at CAS to meet the medical needs of ... first company to have recognized China,s ...
(Date:1/18/2017)... 18, 2017  Market Research Future published a half-cooked research report ... to grow at a CAGR of 12% during the period 2016 ... ... the abnormal cell division without any control. These abnormal cells have ... These cancer cells can spread to other parts of the body ...
(Date:1/17/2017)... Jan. 17, 2017 The Global Implantable ... CAGR of around 7.5% over the next decade ... of the prominent trends that the market is ... diseases & graft transplant surgeries and medical implants ... market is categorized into immunomodulatory biomaterials, natural, polymers, ...
Breaking Biology Technology: