Navigation Links
Promising new nanotechnology for spinal cord injury
Date:4/2/2008

CHICAGO -- A spinal cord injury often leads to permanent paralysis and loss of sensation below the site of the injury because the damaged nerve fibers can't regenerate. The nerve fibers or axons have the capacity to grow again, but dont because they're blocked by scar tissue that develops around the injury.

Northwestern University researchers have shown that a new nano-engineered gel inhibits the formation of scar tissue at the injury site and enables the severed spinal cord fibers to regenerate and grow. The gel is injected as a liquid into the spinal cord and self -assembles into a scaffold that supports the new nerve fibers as they grow up and down the spinal cord, penetrating the site of the injury.

When the gel was injected into mice with a spinal cord injury, after six weeks the animals had a greatly enhanced ability to use their hind legs and walk.

The research is published today in the April 2 issue of the Journal of Neuroscience.

"We are very excited about this," said lead author John Kessler, M.D., Davee Professor of Stem Cell Biology at Northwestern University's Feinberg School of Medicine. "We can inject this without damaging the tissue. It has great potential for treating human beings."

Kessler stressed caution, however, in interpreting the results. "It's important to understand that something that works in mice will not necessarily work in human beings. At this point in time we have no information about whether this would work in human beings."

"There is no magic bullet or one single thing that solves the spinal cord injury, but this gives us a brand new technology to be able to think about treating this disorder," said Kessler, also the chair of the Davee Department of Neurology at the Feinberg School. "It could be used in combination with other technologies including stem cells, drugs or other kinds of interventions."

We designed our self-assembling nanostructures -- the building blocks of the gel -- to promote neuron growth, said co-author Samuel I. Stupp, Board of Trustees Professor of Materials Science and Engineering, Chemistry, and Medicine and director of Northwesterns Institute for BioNanotechnology in Medicine. To actually see the regeneration of axons in the spinal cord after injury is a fascinating outcome.

The nano-engineered gel works in several ways to support the regeneration of spinal cord nerve fibers. In addition to reducing the formation of scar tissue, it also instructs the stem cells --which would normally form scar tissue -- to instead to produce a helpful new cell that makes myelin. Myelin is a substance that sheaths the axons of the spinal cord to permit the rapid transmission of nerve impulses.

The gel's scaffolding also supports the growth of the axons in two critical directions -- up the spinal cord to the brain (the sensory axons) and down to the legs (the motor axons.) "Not everybody realizes you have to grow the fibers up the spinal cord so you can feel where the floor is. If you can't feel where the floor is with your feet, you can't walk," Kessler said.

Now Northwestern researchers are working on developing the nano-engineered gel to be acceptable as a pharmaceutical for the Food & Drug Administration.

If the gel is approved for humans, a clinical trial could begin in several years.

"It's a long way from helping a rodent to walk again and helping a human being walk again," Kessler stressed again. "People should never lose sight of that. But this is still exciting because it gives us a new technology for treating spinal cord injury."


'/>"/>

Contact: Marla Paul
Marla-Paul@northwestern.edu
312-503-8928
Northwestern University
Source:Eurekalert

Related biology news :

1. Promising new drug targets identified for Huntingtons disease
2. Unique whey protein is promising supplement for strict PKU diet
3. Cancer and arthritis therapy may be promising treatment for diabetes
4. Sirtris unveils promising, novel SIRT1 activators for treating diseases of aging
5. New book defines promising young field of adult neurogenesis
6. UIC researchers find promising new targets for antibiotics
7. Strategy for nanotechnology-related environmental, health and safety research
8. Iridescence workshop promotes natures nanotechnology
9. FDLI, PEN co-sponsor major conference on nanotechnology
10. Using nanotechnology, UCLA researchers discover cancer cells feel much softer than normal cells
11. Nanotechnology and the media: The inside story
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/9/2016)... , UAE, May 9, 2016 ... it comes to expanding freedom for high net worth ... Even in today,s globally connected world, there is still ... system could ever duplicate sealing your deal with a ... second passports by taking advantage of citizenship via investment ...
(Date:4/26/2016)... , April 27, 2016 ... the  "Global Multi-modal Biometrics Market 2016-2020"  report to ... ) , The analysts forecast the ... CAGR of 15.49% during the period 2016-2020.  ... number of sectors such as the healthcare, BFSI, ...
(Date:4/13/2016)... , April 13, 2016  IMPOWER physicians supporting ... are setting a new clinical standard in telehealth thanks ... By leveraging the higi platform, IMPOWER patients can routinely ... pulse and body mass index, and, when they opt ... and convenient visit to a local retail location at ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... Raleigh, NC (PRWEB) , ... June 27, 2016 ... ... have just published their findings on what they believe could be a new ... summary of the new research. Click here to read it now. ...
(Date:6/27/2016)... -- Liquid Biotech USA , Inc. ... Research Agreement with The University of Pennsylvania ("PENN") ... patients.  The funding will be used to assess ... outcomes in cancer patients undergoing a variety of ... to support the design of a therapeutic, decision-making ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... While the ... such as the Cary 5000 and the 6000i models are higher end machines that ... the height of the spectrophotometer’s light beam from the bottom of the cuvette holder. ...
(Date:6/23/2016)... , June 23, 2016   Boston ... of novel compounds designed to target cancer stemness ... has been granted Orphan Drug Designation from the ... treatment of gastric cancer, including gastroesophageal junction (GEJ) ... inhibitor designed to inhibit cancer stemness pathways by ...
Breaking Biology Technology: