Navigation Links
Production of 5-aminovaleric and glutaric acid by metabolically engineered microorganism
Date:12/20/2012

We use many different types of chemicals and plastics for the convenience of our everyday life. The current sources of these materials are provided from petrochemical industry, using fossil oil as a raw material. Due to our increased concerns on the environmental problems and fossil resource availability, there has been much interest in producing those chemicals and materials from renewable non-food biomass through biorefineries. For the development of biorefinery process, microorganisms have successfully been employed as the key biocatalysts to produce a wide range of chemicals, plastics, and fuels from renewable resources. However, the natural microorganisms without modification are not suitable for the efficient production of target products at industrial scale due to their poor metabolic performance. Thus, metabolic capacities of microorganisms have been improved to efficiently produce desired products, the performance of which is suitable for industrial production of such products. Optimization of microorganism for the efficient production of target bioproducts has been achieved by systems metabolic engineering, which allows metabolic engineering at the systems-level.

5-aminovalic acid (5AVA) is the precursor of valerolactam, a potential building block for producing nylon 5, and can potentially be used as a C5 platform chemical for synthesizing 5-hydroxyvaleric acid, glutaric acid, and 1,5-pentanediol. It has been reported that a small amount of 5AVA is accumulated in Pseudomonas putida that has impaired L-lysine catabolism since 5AVA is a natural metabolite of L-lysine catabolism in P. putida. However, direct fermentative production of 5AVA has not yet been demonstrated, which might have great potential to open market for C5 chemicals and plastics.

In the paper published in Metabolic Engineering, a Korean research team led by Distinguished Professor Sang Yup Lee at the Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), a premier science and engineering university in Korea, together with Dr. Seung Hwan Lee at Korea Research Institute of Chemical Technology (KRICT), a government supported research institute in Korea, and Prof. Si Jae Park at Myongji University in Korea, applied systems metabolic engineering approach to develop recombinant Escherichia coli for the production of 5-aminovaleric acid and glutaric acid, the promising C5 platform chemicals, by fermentation. Firstly, they constructed metabolic pathway to produce 5-aminovaleric acid (5AVA) using L-lysine as a direct precursor by employing two enzymes lysine 2-monooxygenase (DavB) and delta-aminovaleramidase (DavA). Secondly, metabolic pathway for the further conversion of 5AVA into glutaric acid was constructed by employing two more enzymes 5AVA aminotransferase (GabT) and glutarate semialdehyde dehydrogenase (GabD). Recombinant E. coli expressing DavB and DavA produced 5AVA using L-lysine as a direct precursor, and recombinant E. coli expressing DavB, DavA, GabT, and GabD produced glutaric acid from L-lysine. Finally, the L-lysine biosynthetic pathway of E. coli was systematically engineered to produce 5AVA from glucose. As a proof-of-concept demonstration, fermentation of this metabolically engineered E. coli strain successfully produced 5AVA from glucose. This study showcases the first microbial process for the production of 5AVA and glutatic acid as C5 platform chemicals by developing microbial strain through systems metabolic engineering.


'/>"/>

Contact: Lan Yoon
hlyoon@kaist.ac.kr
82-423-502-295
The Korea Advanced Institute of Science and Technology (KAIST)
Source:Eurekalert

Related biology news :

1. Reproduction and life span are intertwined
2. VTT wins European innovation prize for a new bio-oil production technique
3. Can algae-derived oils support large-scale, low-cost biofuels production?
4. U of Minn. receives $1.8 million grant for improving efficiencies in fuel and plastics production
5. Production of FRP components without release agents
6. CSHL-led team discovers new way in which plants control flower production
7. Agriculture & food production contribute up to 29 percent of global greenhouse gas emissions
8. EyeLock Inc. Brings High-Tech Iris Biometric Production to Texas
9. Brainy beverage: Study reveals how green tea boosts brain cell production to aid memory
10. Clemson plant pathologist working to raise cucurbit yields, lower production costs
11. New process doubles production of alternative fuel while slashing costs
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2017)... 13, 2017 According to a new market research ... Analytics, Identity Administration, and Authorization), Service, Authentication Type, Deployment Mode, Vertical, and ... is expected to grow from USD 14.30 Billion in 2017 to USD ... 17.3%. ... MarketsandMarkets Logo ...
(Date:4/6/2017)... April 6, 2017 Forecasts by ... Document Readers, by End-Use (Transportation & Logistics, Government & ... Gas & Fossil Generation Facility, Nuclear Power), Industrial, Retail, ... Are you looking for a definitive report ... ...
(Date:4/3/2017)... WASHINGTON , April 3, 2017 /PRNewswire-USNewswire/ ... single-cell precision engineering platform, detected a statistically ... cell product prior to treatment and objective ... highlight the potential to predict whether cancer ... prior to treatment, as well as to ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... 2017  VMS BioMarketing, a leading provider of patient support ... Nurse Educator (CNE) network, which will launch this week. The ... health care professionals to enhance the patient care experience by ... other health care professionals to help women who have been ... ...
(Date:10/10/2017)... ... , ... San Diego-based team building and cooking events company, Lajollacooks4u, has unveiled ... bold new look is part of a transformation to increase awareness, appeal to new ... , It will also expand its service offering from its signature gourmet cooking classes ...
(Date:10/10/2017)... SANTA CRUZ, Calif. , Oct. 10, 2017 /PRNewswire/ ... SBIR grant from the NIH to develop RealSeq®-SC (Single ... preparation kit for profiling small RNAs (including microRNAs) from ... Cell Analysis Program highlights the need to accelerate development ... "New techniques for ...
(Date:10/9/2017)... , ... October 09, 2017 , ... At its national ... Christopher Stubbs, a professor in Harvard University’s Departments of Physics and Astronomy, has been ... a member of the winning team for the 2015 Breakthrough Prize in Fundamental physics ...
Breaking Biology Technology: