Navigation Links
Probing and controlling 'molecular rattling' may mean better preservatives
Date:2/25/2009

For centuries, people have preserved fruit by mixing it with sugar, making thick jams that last for months without spoiling. Now scientists at the National Institute of Standards and Technology (NIST) have discovered* a fundamental property of mixture behavior that might help extend the life of many things including vaccines, food and library booksand save money while doing it.

In addition to jams, sugars are often used to preserve pharmaceuticals and similar biological materials. There are a number of mechanisms involved, but recently the local stiffening of the preservative was identified as a factor that can increase shelf life. Basically, stiffening the preservative decreases the rattling of the fluids molecules and stabilizes the product, presumably because these rattling motions are intimately involved in spoilingfor instance, in the protein degradation processes that lead to the loss of biological function. Several years ago, the NIST team discovered the practical importance of high-frequency molecular rattling for protein preservation.**

But while sugars and other preservatives such as salts have been used since ancient times, the prediction of how well a preservative works for a specific material has remained more an art than a science. Now, however, the NIST team has developed a relatively accessible measurement method for precisely quantifying the slowing down (or enhancement) of the local rattling motions in preservative formulations and have introduced a general mathematical framework for describing these changes. This should remove much of the guesswork in determining the best way to protect a particular commodity, says Jack Douglas of Polymers Division of NIST.

In the new paper, the team reveals a general pattern of behavior in the change in the rattling motions in mixtures that appears to apply to a variety of materials; these findings promise to be very helpful in the future development of preservatives. The paper also focuses on understanding the fundamental origin of high-frequency rattlings effects, and it addresses enhancements in measurement and analysis that should allow researchers to optimize the preservation process.

Theres a real regularity with which these changes occur, and we found a simple mathematical model that encapsulates these changes, Douglas says. The value here is that this mathematical framework allows you to consider this problem for many different materials.

Douglas speculates that the discovery could help to extend the shelf life of vaccines significantly and also could be applied to preserving other biological materials such as seeds and prepared foods. The insight gained could even help to preserve library books. These measurements can help determine the rate at which the changes occur, and that would help you predict how using more or less preservative might affect things, or how one substance stacks up against another, Douglas says. It could hasten discovery of the optimal additive for achieving a given end.


'/>"/>

Contact: Chad Boutin
boutin@nist.gov
301-975-4261
National Institute of Standards and Technology (NIST)
Source:Eurekalert

Related biology news :

1. New book presents successful strategies for probing genetic variation
2. Controlling cucumber beetles organically
3. Brain enzyme may play key role in controlling appetite and weight gain
4. bioMETRX, Inc. Signs Deal To Acquire Controlling Interest in Biometric Solutions, LLC
5. Hidden infections crucial to understanding, controlling disease outbreaks
6. Biologists identify genes controlling rhythmic plant growth
7. People with heart disease still have trouble controlling blood lipid levels
8. Controlling embryonic fate by association
9. Controlling a sea of information
10. Controlling schistosomiasis: buffalo or snails?
11. Bioclocks work by controlling chromosome coiling
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/17/2016)... LONDON , Nov. 17, 2016 Global Market ... and Public Biobanks (Disease-Based Banks, Population-Based Banks and Academics) market ... Geographical analysis for Private Biobanks shows the highest Compounded Annual ... Asia-Pacific region during the analysis period 2014-2020. ... a CAGR of 9.95% followed by Europe ...
(Date:11/15/2016)... -- Research and Markets has announced the addition of ... to their offering. ... The global bioinformatics ... USD 6.21 Billion in 2016, growing at a CAGR of 21.1% ... market is driven by the growing demand for nucleic acid and ...
(Date:6/22/2016)...  The American College of Medical Genetics and Genomics was ... as one of the fastest-growing trade shows during the Fastest ... in Las Vegas . ... in each of the following categories: net square feet of ... attendees. The 2015 ACMG Annual Meeting was ranked 23 out ...
Breaking Biology News(10 mins):
(Date:12/6/2016)... , Dec. 6, 2016 Zimmer Biomet ... today announced the pricing terms of its previously-announced ... $1.25 billion aggregate purchase price (excluding accrued and unpaid ... date and excluding fees and expenses related to ... debt securities identified in the table below (collectively, ...
(Date:12/5/2016)... , Dec. 5, 2016 Axovant Sciences ... biopharmaceutical company focused on the treatment of dementia, today ... for the treatment of Alzheimer,s disease will be presented ... Meeting on Friday, December 9, 2016 in ... show results of both simple and complex measures of ...
(Date:12/5/2016)... December 5, 2016 According ... Market, by Products (Consumable, Instruments, Automated Cell Expansion ... and Stem Cell Research, Cancer, and Cell-Based Research), ... Banks) - Global Revenue, Trends, Growth, Share, Size ... Research, the global cell expansion market is expected ...
(Date:12/5/2016)... -- Research and Markets has announced the addition ... Markets and Companies" to their offering. ... , , ... genome variations, development of sequencing technologies, and their applications. Current ... developing them. Various applications of sequencing are described including those ...
Breaking Biology Technology: