Navigation Links
Princeton team's analysis of flu virus could lead to better vaccines
Date:5/12/2009

A team of Princeton University scientists may have found a better way to make a vaccine against the flu virus.

Though theoretical, the work points to the critical importance of what has been a poorly appreciated aspect of the interaction between a virus and those naturally produced defensive proteins called antibodies that fight infection. By manipulating this multi-stage interactive process -- known as antibody interference -- to advantage, the scientists believe it may be possible to design more powerful vaccines than exist today.

The findings are described in the May 11 online edition of the Proceedings of the National Academy of Sciences.

"We have proposed that antibody interference plays a major role in determining the effectiveness of the antibody response to a viral infection," said Ned Wingreen, a professor of molecular biology and a member of the Lewis-Sigler Institute for Integrative Genomics. "And we believe that in order to get a more powerful vaccine, people are going to want one that minimizes this interference."

Other authors on the paper include Simon Levin, the George M. Moffett Professor of Biology, and Wilfred Ndifon, a graduate student in Levin's lab and first author on the paper.

When a virus like influenza attacks a human, the body mounts a defense, producing antibodies custom-designed to attach themselves to the virus, blocking it from action and effectively neutralizing its harmful effects on the body.

Analyzing data about viral structure, antibody types and the reactions between them produced by virology laboratories across the country, Ndifon noticed a perplexing pattern. He found that antibodies were often better at protecting against a slightly different virus, a close cousin, than against the virus that spurred their creation. This is known as cross-reactivity.

A closer look, using techniques that combine computing and biophysics, suggested that a phenomenon known as antibody interference was at play. It arises when a virus prompts the creation of multiple types of antibodies. During a viral attack, what then transpires is that antibodies vie with each other to defend the body and sometimes crowd each other out as they attempt to attach themselves to the surface of the virus.

Strangely, antibodies that are actually less effective at protecting the body against a specific virus are often equally adept at attaching themselves to the virus, blocking the more effective antibodies from doing their job. The scientists suggest that if a way can be found to weaken the binding of the less effective antibodies, then this might constitute a new approach to vaccine design. Indeed, the perplexing pattern of enhanced cross-reactivities observed by Ndifon can be attributed to viruses that differ only at the sites on their surfaces where the less effective antibodies bind. Such variants would make ideal vaccine strains, guiding the immune system to produce two distinct types of antibodies: effective ones that are well matched to and good at binding to the infecting virus, and ineffective ones that are poorly matched to and bad at binding to the infecting virus, and consequently stay out of the way.

Today, vaccine designers, such as those working on new forms of flu vaccines, center their efforts upon developing a weakened strain of a virus that matches as closely as possible the anticipated infecting strain. Patients are then inoculated with this attenuated virus to provoke the creation of antibodies that will protect against future attacks.

The Princeton scientists suggest their findings show that a better way might involve intentionally developing a vaccine strain that differs from the anticipated infectious virus at the sites where less effective antibodies bind. In this way, the ineffective antibodies would stay out of the way in the face of a real influenza virus, allowing the effective antibodies to more fiercely fight the dangerous infecting strain when it comes along.

The team does not expect to develop a vaccine but is hoping to inspire others. Wingreen is a theoretical physicist, Levin is a theoretical ecologist and Ndifon is a graduate student learning theoretical biology. "Our best bet is to express our ideas as clearly as we can and hope someone will find them interesting and do the necessary experiments to verify or disprove them," Wingreen said.


'/>"/>

Contact: Kitta MacPherson
kittamac@princeton.edu
609-258-5729
Princeton University
Source:Eurekalert

Related biology news :

1. Princeton geoscientist offers new evidence that meteorite did not wipe out dinosaurs
2. Princeton researchers discover new type of laser
3. Princeton-led team finds secret ingredient for the health of tropical rainforests
4. Gift of $100 million to transform energy and environment research at Princeton
5. Princeton engineers develop low-cost recipe for patterning microchips
6. ESAs Earth observation missions: Sharing teams and facilities boosts efficiency
7. Entomological Society of Americas Linnaean Games teams selected
8. CIC Teams With Industry Leader iPipeline to Provide Electronic Signature Platform to the Nations Top Insurance Carriers
9. EPA teams with National Geographic Society and World Resources Institute to map ecosystem services
10. School of Robofish provides basis for underwater robot teams
11. Platinum Solutions, Inc. Teams with Lockheed Martin on Federal Bureau of Investigations Next Generation Identification Program
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/28/2017)... , March 28, 2017 The ... Hardware (Camera, Monitors, Servers, Storage Devices), Software (Video Analytics, ... Region - Global Forecast to 2022", published by MarketsandMarkets, ... 2016 and is projected to reach USD 75.64 Billion ... and 2022. The base year considered for the study ...
(Date:3/24/2017)... 24, 2017 The Controller General of Immigration from ... Abdulla Algeen have received the prestigious international IAIR Award for the ... Continue Reading ... ... Controller Abdulla Algeen (small picture on the right) have received the IAIR ...
(Date:3/23/2017)... The report "Gesture Recognition and Touchless Sensing Market by Technology (Touch-based ... to 2022", published by MarketsandMarkets, the market is expected to be worth USD ... 2022. Continue Reading ... ... ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... and LAGUNA HILLS, Calif. , Oct. ... Cancer Research, London (ICR) and University ... SKY92, SkylineDx,s prognostic tool to risk-stratify patients with multiple myeloma ... MUK nine . The University of Leeds ... partly funded by Myeloma UK, and ICR will perform the ...
(Date:10/10/2017)... ... 2017 , ... San Diego-based team building and cooking events company, Lajollacooks4u, has ... The bold new look is part of a transformation to increase awareness, appeal to ... period. , It will also expand its service offering from its signature gourmet cooking ...
(Date:10/10/2017)... 10, 2017 International research firm Parks Associates announced ... at the TMA 2017 Annual Meeting , October 11 in ... residential home security market and how smart safety and security products impact ... Parks Associates: Smart Home ... "The residential security market has ...
(Date:10/9/2017)... DIEGO , Oct. 9, 2017  BioTech ... biological mechanism by which its ProCell stem cell ... critical limb ischemia.  The Company, demonstrated that treatment ... amount of limbs saved as compared to standard ... the molecule HGF resulted in reduction of therapeutic ...
Breaking Biology Technology: